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ABSTRACT
We consider the problem of pruning inferior systems among a finite number of
simulated systems using constraints that are stochastic (in that their performance
measures need to be estimated through observations) and subjective (in that their
thresholds can be tightened or relaxed). With subjective constraints, the decision
maker can test multiple threshold values to determine how a set of feasible systems
changes as constraints become more strict and use this information to prune systems
or identify the system with the best performance. When the number of possible
thresholds is large, the decision maker may want to start by obtaining the feasibility
decisions with respect to a smaller subset of thresholds. Depending on the results,
she can then add tighter or relaxed thresholds if many or no feasible systems have
been identified. In this paper, we present a Multi-Pass Pruning (MPP) procedure
that starts with a smaller set of thresholds in a first pass and adds more thresholds
sequentially in later passes with the goal of pruning inferior systems efficiently. We
prove the statistical validity of the proposed procedure and numerically demonstrate
its efficiency in terms of the required number of observations for pruning inferior
systems.

KEYWORDS
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1. Introduction

We consider the problem of pruning inferior systems among a finite number of simu-
lated systems by comparing their performance with different standards (i.e., checking
the feasibility of the systems with respect to different thresholds). For example, a deci-
sion maker wishes to implement an (s, S) inventory policy (namely ordering products
up to S when the inventory level at a review period is below s, with no order placed
when the inventory level is above or equal to s) with two performance measures. She
hopes to identify combinations of the values of s and S among finitely many choices
such that (i) the probability that a shortage occurs during a review period and (ii)
the expected cost per review period are both small. One can formulate the above bi-
objective optimization problem as a feasibility determination problem by incorporating
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the constraints that the shortage probability is no larger than q1 and the expected cost
is less than or equal to q2. By identifying feasible systems with respect to the thresholds
q1 and q2, those systems that are deemed infeasible are considered as inferior and can
be pruned. When constraints are subjective, instead of choosing two fixed values for
the threshold constants q1 and q2, the decision maker can allow the constraints to have
several values for each threshold (such as 20 possible values 0.01, 0.02, 0.03, . . . , 0.19, 0.2
for q1 and 121 possible values 115, 115.5, 116, . . . , 174.5, 175 for q2) and observe how
the feasible set varies with respect to each combination of thresholds in order to fur-
ther prune inferior systems. For example, she can start with larger thresholds for both
constraints, say 0.2 for threshold q1 and 175 for threshold q2, and repeat the feasibility
check for smaller values for q1 or q2, such as 0.05 for q1 and 120 for q2, while there are
multiple feasible solutions left. For each combination of thresholds, whenever infeasible
systems are identified, the systems are considered inferior and can be pruned.

Ranking and Selection (R&S) is a classical and actively studied problem in the
simulation community. R&S procedures are useful in identifying feasible systems or a
system with the best expected performance among a finite number of systems whose
performance is estimated through stochastic simulation. We refer to Kim and Nel-
son (2006) and Hong, Nelson, and Xu (2015) for detailed literature reviews of R&S
with a single performance measure. In reality, decision makers may want to handle
multiple performance measures (as in the inventory example discussed above) and
Hunter et al. (2019) provide a review on the multi-objective simulation optimization
problem. Several studies apply the Optimal Computing Budget Allocation (OCBA)
approach to handle multiple performance measures. Lee et al. (2012) consider the pri-
mary performance measure as the objective and the remaining secondary performance
measures as constraints. Lee et al. (2010) propose a multi-objective OCBA method to
allocate computing budget among systems in order to minimize types I and II errors
in selecting non-dominated systems.

Among the R&S procedures that use the indifference-zone (IZ) approach and deal
with multiple performance measures, Andradóttir and Kim (2010) consider two per-
formance measures and propose procedures to identify the best system in terms of the
primary performance measure and subject to a constraint on the secondary perfor-
mance measure. Healey, Andradóttir, and Kim (2014) propose procedures to identify
the best system in the presence of multiple secondary performance measures. Batur
and Kim (2010) propose procedures to identify the feasibility of systems with respect
to multiple constraints with fixed thresholds. Andradóttir and Lee (2021) present a
procedure to estimate a Pareto set with statistical guarantee. When the stochastic
constraints are subjective (i.e., have multiple thresholds), Zhou et al. (2022) adopt
the concept of “green simulation” and propose statistically valid procedures that recy-
cle simulation observations to perform feasibility checks with respect to all threshold
values on each performance measure. Zhou, Andradóttir, and Kim (2023) propose pro-
cedures to identify the system with the best possible primary performance measure in
the presence of subjective stochastic constraints on secondary performance measures.

In practice, the decision maker may not value one performance over the others. Or
the decision maker may be interested in understanding how the set of feasible systems
changes when the thresholds vary for each constraint. These problems cannot be fully
addressed by the procedures due to Zhou, Andradóttir, and Kim (2023). In this paper,
rather than formulating the multi-objective optimization problem as a selection-of-the-
best problem with subjective constraints as Zhou, Andradóttir, and Kim (2023) do,
we will model it as the feasibility check problem with subjective constraints considered
by Zhou et al. (2022).
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When the objective of a feasibility check problem with subjective constraints is to
solve a multi-objective optimization problem, it is reasonable to consider large numbers
of possible values for the constraint thresholds in order to facilitate the comparison of
the different systems. However, to perform feasibility checks for subjective constraints,
Zhou et al. (2022) suggest to apply their proposed RF procedure with respect to all
possible thresholds, even if that number is large. For the inventory example discussed
above, to find the system with the smallest possible combination of shortage proba-
bility and expected cost, this would involve checking feasibility with respect to all 20
thresholds of the shortage probability constraint and all 121 thresholds of the expected
cost constraint, and prune systems based on the feasibility decisions to those thresh-
olds. If the decision maker’s objective is to use feasibility decisions to prune inferior
systems, then checking feasibility with respect to all possible thresholds for all systems
can be inefficient. For example, if any system is already deemed feasible with respect to
the threshold combination 0.1 and 120, then there is no need to perform additional fea-
sibility checks from systems deemed infeasible with respect to 0.1 and 120. However,
the RF procedure will keep collecting more observations from such systems, solely
aiming to perform feasibility checks for all less preferred thresholds (i.e., q1 > 0.1 and
q2 > 120), which is a waste of time and resources. In this case, a multi-pass approach
is preferable, where a “pass” represents the feasibility checks for systems with respect
to a subset of the set of thresholds. More specifically, the decision maker can start
with thresholds q1 ∈ {0.01, 0.1, 0.2} and q2 ∈ {115, 145, 175} in the first pass (a total
of three thresholds for each constraint). If no systems are feasible with respect to the
most preferred threshold combination 0.01 and 115 but several systems are feasible
with respect to threshold combination 0.1 and 145, the decision maker can consider
additional thresholds q1 = 0.05 and q2 ∈ {120, 125, . . . , 140} in the second pass (one
threshold for the first constraint and five thresholds for the second constraint). If fea-
sible systems are identified with respect to threshold combination 0.05 and 120, she
can further include additional thresholds that are multiples of 0.01 from 0.02 to 0.04
for the shortage probability constraint and thresholds that are multiples of 0.5 from
115.5 to 119.5 for the expected cost constraint (a total of three thresholds for the first
constraint and nine thresholds for the second constraint). Such a multi-pass approach
reduces the total number of thresholds considered from 20 to 7 and 121 to 17 for the
shortage probability and the expected cost constraints, respectively, and may reduce
the number of needed observations as well.

In this paper, we propose a Multi-Pass Pruning (MPP) procedure that performs
feasibility check with respect to a subset of possible thresholds during the first pass
and allows the decision maker to sequentially add thresholds in the following passes.
The main contributions of this paper include (1) suggesting new statistics that enable
us to implement feasibility checks with sequentially added thresholds for subjective
constraints without significantly increasing the data storage requirement, (2) proposing
a computationally efficient procedure for the purpose of pruning inferior systems, (3)
proving the statistical guarantee of the proposed procedure, and (4) demonstrating
the computational efficiency and statistical validity of our new procedure through
experiments.

The rest of this paper is organized as follows: Section 2 provides the background
of our problem, including the problem formulation and a discussion of existing work.
Section 3 proposes our multi-pass procedure to identify feasible systems in the pres-
ence of subjective stochastic constraints with sequentially added thresholds. Section 4
proves the statistical validity of our proposed procedure. The experimental results are
provided in Section 5 and the concluding remarks are in Section 6.
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2. Background

In this section, we provide the background for our problem. Section 2.1 describes the
problem and notation and Section 2.2 discusses the existing procedure RF that is
relevant to our problem.

2.1. Problem and Notation

In this section, we present our problem description and the required notation. We con-
sider k systems whose s performance measures can be estimated through stochastic
simulation. Let Θ denote the index set of all possible systems (i.e., Θ = {1, . . . , k}).
Let Yi`n, where i = 1, . . . , k, ` = 1, . . . , s, and n = 1, 2, . . ., be the nth observation of
the ith system for the `th performance measure. Note that the observations across
different systems may or may not be correlated depending on whether systems are
simulated independently or under common random numbers (CRN). The expected
value and variance for system i regarding performance measure ` are denoted as yi`
= E[Yi`n] and σ2

i` = Var(Yi`n). Observations are assumed to satisfy the following nor-
mality assumption:

Assumption 1. For each i = 1, 2, . . . , k, Yi1n
...

Yisn

 iid∼ Ns


 yi1

...
yis

 ,Σi

 , n = 1, 2, . . . ,

where
iid∼ denotes independent and identically distributed, Ns denotes s-dimensional

multivariate normal, and Σi is the s × s positive definite covariance matrix of the
vector (Yi1n, . . . , Yisn).

Normally distributed observations are a common assumption used in many R&S
procedures because Assumption 1 can be justified by the central limit theorem when
observations are either within-replication averages or batch means (Law and Kelton,
2000). The observations of different performance measures from a system can be cor-
related, such as the shortage probability and expected cost in the inventory example
of Section 1.

When each constraint contains one fixed threshold value with a given threshold
vector q = (q1, . . . , qs), Batur and Kim (2010) introduce procedure FB to determine
a set of systems i with yi` ≤ q` for all ` = 1, 2, . . . , s. In this paper, we consider
subjective constraints whose threshold values vary. We let d` denote the number of
threshold values that the decision maker is interested in for performance measure `
and let q`m denote the threshold value for performance measure ` with index m, where
m = 1, . . . , d`.

Consider the feasibility check of a system with respect to constraint ` and threshold
q`m. Andradóttir and Kim (2010) propose the concept of a tolerance level, which is
denoted by ε` for constraint ` and set to a positive real number by the decision maker.
Any system i with yi` ≤ q`m − ε` is considered desirable and feasible with respect
to constraint ` and threshold q`m. The set of all desirable systems with respect to
constraint ` and threshold q`m is denoted as D`(q`m). Systems with yi` ≥ q`m + ε` are
unacceptable and infeasible with respect to constraint ` and threshold q`m, placing
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them in the set U`(q`m). Systems that fall within the tolerance level of q`m, so that
q`m − ε` < yi` < q`m + ε` are acceptable, and are placed in the set A`(q`m):

D`(q`m) = {i ∈ Θ | yi` ≤ q`m − ε`};
U`(q`m) = {i ∈ Θ | yi` ≥ q`m + ε`}; and

A`(q`m) = {i ∈ Θ | q`m − ε` < yi` < q`m + ε`}.

When performing feasibility check, we use CDi`(q`m) to denote a correct decision
event of system i with respect to constraint ` for threshold q`m, which is an event such
that system i is declared to be feasible with respect to constraint ` if i ∈ D`(q`m)
and infeasible if i ∈ U`(q`m). For i ∈ A`(q`m), any decision is considered as a correct
decision.

We define CDi`, the correct decision event for system i with respect to constraint `,
as correctly determining feasibility for all possible thresholds q`m where m = 1, . . . , d`,
i.e., CDi` = ∩d`m=1CDi`(q`m). Then, a statistically-valid procedure that determines the
feasibility for all combinations of the threshold values with respect to all performance
measures should satisfy the following statement:

PCD = Pr
(
∩ki=1 ∩s`=1CDi`

)
≥ 1− α,

where 1− α is the nominal confidence level for the feasibility check.
The decision maker starts by choosing all possible threshold values for constraint `

and defining a set of possible thresholds, {q`1, q`2, . . . , q`d`}. Without loss of generality,
we adopt the conversion that q`1 < q`2 < · · · < q`d` for each ` = 1, . . . , s. Suppose that
the decision maker performs the initial feasibility check with respect to a subset of
the possible thresholds and adds additional possible thresholds in subsequent passes
(possibly adaptively). We introduce the following notation.

T` ≡ the index set of all possible thresholds considered for constraint `, {1, 2, . . . , d`};

T
(w)
` ≡ the index set of the thresholds tested in pass w ≥ 1 for constraint `;

H(w) ≡ the index set of the constraints with added thresholds in pass w ≥ 1

(i.e., ` such that T
(w)
` 6= ∅).

The thresholds tested in each pass w ≥ 1 should be possible thresholds that have not

been tested in previous passes, and hence T
(w)
` ⊆ T` \ (∪w−1

u=1T
(u)
` ) for ` = 1, 2, . . . , s.

Consider the inventory example in Section 1. The pre-defined threshold set for the
shortage probability constraint (i.e., ` = 1) is {0.01 + 0.01γ | 0 ≤ γ ≤ 19, γ ∈ Z} and
for the expected cost constraint (i.e., ` = 2) is {115 + 0.5γ | 0 ≤ γ ≤ 120, γ ∈ Z}.
This means that T1 = {1, 2, . . . , 20} and T2 = {1, 2, . . . , 121}. The decision maker
wants to run the first pass with thresholds {0.01, 0.1, 0.2} for the shortage proba-
bility constraint and with {115, 145, 175} for the expected cost constraint. Then we

have T
(1)
1 = {1, 10, 20} and T

(1)
2 = {1, 61, 121}. Assume that she adds thresholds

{120, 125, 130, 135, 140} for the expected cost constraint in the second pass and no ad-
ditional thresholds for the shortage probability constraint (unlike in Section 1). Then

we have H(2) = {2}, T (2)
1 = ∅, and T

(2)
2 = {11, 21, 31, 41, 51}.

The thresholds tested up to the wth pass are q`m where m ∈ ∪wu=1T
(u)
` for ` =

1, . . . , s. We seek a statistical guarantee that the feasibility decisions under the multi-
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pass approach are identical to those of RF when the thresholds q`m where m ∈
∪wu=1T

(u)
` , ` = 1, . . . , s, are considered in one pass in RF .

Throughout the paper, we need the additional notation defined below:

n0 ≡ the initial sample size for each system (n0 ≥ 2);

ri ≡ the number of observations obtained so far for system i (ri ≥ n0);

Ȳi`(ri) ≡ average value of Yi`1, . . . , Yi`ri for system i and constraint `;

S2
i`(n0) ≡ the sample variance of Yi`1, . . . , Yi`n0

for system i = 1, 2, . . . , k and

constraint ` = 1, . . . , s;

R(ri; v, w, z) ≡ max

{
0,

(n0 − 1)wz

v
− v

2c
ri

}
for v, w, z ∈ R+ and c ∈ N+;

g(η) =

c∑
j=1

(−1)j+1

(
1− 1

2
I(j = c)

)
×
(

1 +
2η(2c− j)j

c

)−(n0−1)/2

,

where c ∈ N+ and I(·) is the indicator function.

The non-negative function R(ri; ·) is used to specify an interval (−R(ri; ·), R(ri; ·))
called the continuation region after ri observations have been collected from system i.
To determine the continuation region, we need to choose the value of c. The shape of
the continuation region (−R(ri; ·), R(ri; ·)) becomes a longer and narrower triangle as c
increases and turns into two straight lines when c =∞. The choice c = 1 guarantees a
unique and easy solution when computing the implementation parameter η from g(η).
Kim and Nelson (2001) also suggests that c = 1 is a good choice when the decision
maker does not have information about the systems’ mean configuration. Zhou et al.
(2022) consider both c ∈ N+ and c = ∞ and present expressions for g(η) for in both
cases. However, as the focus of this paper is not on the continuation region and as
c = 1 is a good choice, we only consider g(η) when c ∈ N+ and we set c = 1 for the
experimental results in this paper.

2.2. Existing Procedure

In this section, we provide a brief overview of the procedure RF due to Zhou et al.
(2022) that performs feasibility check for subjective constraints. RF is given in Algo-
rithm 1 with the following definition of β,

β ≡
{

1− (1− α)1/k, when systems are independent,
α/k, when systems are dependent.

(1)

As shown in Algorithm 1, Procedure RF determines the feasibility of system i with
respect to threshold q`m on constraint ` as

feasible, if Ȳi`(ri) +
R(ri; ε`, η, S

2
i`(n0))

ri
≤ q`m,

infeasible, if Ȳi`(ri)−
R(ri; ε`, η, S

2
i`(n0))

ri
≥ q`m.

(2)

In other words, RF constructs an interval (Ȳi`(ri) − R(ri; ε`, η, S
2
i`(n0))/ri, Ȳi`(ri) +

R(ri; ε`, η, S
2
i`(n0))/ri) whenever an observation Yi`ri is collected and makes the feasi-
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Algorithm 1 Procedure RF
[Setup:]
Choose confidence level 1−α, tolerance level ε`, and thresholds {q`1, q`2, . . . , q`d`} for
constraint ` = 1, 2, . . . , s. Also, choose the value of c ∈ N+ and set Θ = {1, 2, . . . , k}.
For ` = 1, . . . , s, set η` such that g(η`) = β`, where β satisfies (1), and either

(i) β` = (β/s) · I(d` = 1) + [β/(2s)] · I(d` > 1) for ` = 1, 2, . . . , s, or
(ii) β` = β/D; D =

∑s
`=1 min{d`, 2} for ` = 1, . . . , s.

for each system i ∈ Θ do
[Initialization:]
• Obtain n0 observations Yi`1, Yi`2, . . . , Yi`n0

for ` = 1, 2, . . . , s.
• Compute Ȳi`(n0) and S2

i`(n0) for ` = 1, 2, . . . , s.
• Set ri = n0,ON = {1, 2, . . . , s}, and ON` = {1, 2, . . . , d`} for ` = 1, 2, . . . , s.
[Feasibility Check:]
for ` ∈ ON do

for m ∈ ON` do,
If Ȳi`(ri) + R(ri; ε`, η`, S

2
i`(n0))/ri ≤ q`m, set Zi`m = 1 and ON` = ON` \

{m}.
If Ȳi`(ri)− R(ri; ε`, η`, S

2
i`(n0))/ri ≥ q`m, set Zi`m = 0 and ON` = ON` \

{m}.
end for
If ON` = ∅, set ON = ON \ {`}.

end for
[Stopping Condition:]

If ON = ∅, return Zi`m for ` = 1, 2, . . . , s and m = 1, 2, . . . , d`. Otherwise, set
ri = ri+1, take one additional observation Yi`ri and update Ȳi`(ri) for ` ∈ ON,
then go to [Feasibility Check].

end for

bility decision for system i with respect to threshold q`m when the threshold q`m falls
outside of the interval.

The following theorem from Zhou et al. (2022) shows that there are at most two
effective thresholds on each constraint.

Theorem 2.1. For system i with s constraints and thresholds T` = {q`1, q`2, . . . , q`d`}
for ` = 1, 2, . . . , s, the joint probability of correct decision with respect to thresholds
yi` − ε` and yi` + ε` is a lower bound on the joint probability of correct decision with
respect to all thresholds of constraint `, i.e.,

Pr
(
∩d`m=1CDi`(q`m)

)
≥ Pr (CDi`(yi` − ε`),CDi`(yi` + ε`)) .

Theorem 2.1 implies that a procedure designed to deliver a correct decision with
respect to the two effective thresholds yi` − ε`, yi` + ε` on constraint ` will deliver
correct decisions with respect to the other thresholds. RF is designed to accomplish
this. Thus RF avoids setting the implementation parameter η in a very conservative
way and scales well with respect to the number of thresholds. However, it requires
all thresholds to be tested simultaneously in one pass for statistical validity, and thus
the computation time for [Feasibility Check] increases as the number of thresholds
increases.
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3. Multi-Pass Pruning (MPP) Procedure

In this section, we present a new procedure to identify feasible systems for subjective
constraints when thresholds are added sequentially in multiple passes. Section 3.1
presents the pruning procedure for the first pass and Section 3.2 proposes the pruning
procedure for the subsequent passes.

3.1. First-Pass Pruning Procedure

In this section, we propose a procedure with new statistics that performs feasibility
check for the first-pass when the decision maker considers a subset of thresholds chosen
from the set of all possible thresholds.

As discussed in Section 2.2, Procedure RF checks the two inequalities in Equation
(2) for each threshold q`m whenever an observation is collected from constraint `. Recall
that the statistical guarantee we want to provide is that the feasibility decisions under
the multi-pass approach are identical to those of RF . One straightforward way to
provide such guarantee is to save the sample paths Ȳi`(ri) of system i, where ri ≥ n0,
during the first pass and track down from the very first stage (i.e., from ri = n0) what
would have happened if RF had been performed with all thresholds considered in the
multiple passes. However, this is not desirable due to a data storage problem. Instead,
we keep the following two statistics while system i is simulated:

vUB
i` ≡ min

{
Ȳi`(r

′) +
R(r′; ε`, η`, S

2
i`(n0))

r′

∣∣∣∣∣ n0 ≤ r′ ≤ ri

}
and

vLB
i` ≡ max

{
Ȳi`(r

′)−
R(r′; ε`, η`, S

2
i`(n0))

r′

∣∣∣∣∣ n0 ≤ r′ ≤ ri

}
,

where vUB
i` is the minimum of the upper bounds (UB) and vLB

i` is the maximum of
the lower bounds (LB) that the possible thresholds q`m have been compared with
so far. The first pass for the Multi-Pass Pruning (MPP) procedure, namely P(1),
then determines system i feasible with respect to threshold q`m on constraint ` if

vUB
i` ≤ q`m and infeasible if vLB

i` ≥ q`m where m ∈ T
(1)
` . We update the interval

(vLB
i` , v

UB
i` ) whenever an observation Yi`ri is collected and the feasibility decision is

made for a particular threshold q`m, where m ∈ T
(1)
` , once it falls outside of the

interval for the first time. Figure 1 shows the behavior of vUB
i` and vLB

i` when feasibility
check is performed with respect to thresholds {q`m1

, q`m2
} on constraint ` during the

first pass (i.e., m1,m2 ∈ T (1)
` ). In Figure 1, q`m1

falls outside of the interval (i.e., below
vLB
i` ) at ri1 for the first time and system i is then determined infeasible with respect to
q`m1

. The feasibility decision for q`m2
is determined at ri2 and system i is determined

feasible with respect to q`m2
as q`m2

falls above vUB
i` .

The full description of P(1) is provided in Algorithm 2 for k systems, s constraints,

and thresholds q`m where m ∈ T (1)
` for ` = 1, . . . , s. We use Zi`m, where m ∈ T (1)

` ,
to indicate the feasibility of system i with respect to threshold q`m on constraint `
(i.e., Zi`m = 1 if system i is feasible with respect to threshold q`m on constraint `, and
Zi`m = 0 otherwise).

Note that in addition to only considering a subset of all possible thresholds whose

indices are in T
(1)
` ⊆ T` and maintaining the variables vUB

i` and vLB
i` , P(1) incorporates
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ri1 ri2

q m1

q m2

Yi (ri) + R(ri; , , S2
i (n0))/ri

Yi (ri) R(ri; , , S2
i (n0))/ri

vUB
i

vLB
i

Figure 1. Behavior of vUB
i` and vLB

i` for the feasibility check with respect to thresholds {q`m1
, q`m2

} on

constraint `, where m1,m2 ∈ T (1)
` .

several other differences with RF as described below:

• We add variables LASTi` in the description of P(1). This is needed for sub-
sequent passes of the feasibility check when vUB

i` ≤ vLB
i` so that we can directly

conclude the correct feasibility decisions for the added thresholds. Note that P(1)

can overwrite the value of LASTi` if both vLB
i` and vUB

i` are updated in one stage.
A detailed discussion on the use of LASTi`, including an explanation that over-
writing LASTi` in the same stage does not result in unintended consequences, is
provided in Section 3.2.
• We keep collecting observations Yi`ri from constraint ` with vUB

i` > vLB
i` and up-

date Ȳi`ri(ri) when ON 6= ∅ even if ` 6∈ ON. Note that whenever we conduct one
simulation replication, observations across all the constraints can be obtained.
Therefore, obtaining observations from constraint ` such that ` 6∈ ON 6= ∅ does
not increase the total number of required simulation replications. This addi-
tional data prepares for the case when the decision maker adds thresholds in
later passes for such constraints (in order to guarantee statistical validity and
increase efficiency). One may notice that when vUB

i` ≤ vLB
i` , adding thresholds to

constraint ` does not require additional observations to conclude their feasibility
decisions because every possible threshold q`m satisfies vUB

i` ≤ q`m or vLB
i` ≥ q`m

or both. In addition, when vUB
i` ≤ vLB

i` , we utilize the final value of LASTi` to
conclude certain feasibility decisions in later passes. Collecting additional ob-
servations when vUB

i` ≤ vLB
i` might overwrite LASTi` and lead to issues with

statistical validity.
• We save the (final) random seed(s) for each system when the feasibility check is

completed so that we can continue generating observations for the systems that
match those of RF in future passes if needed.
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Algorithm 2 Procedure P(w), w = 1

[Setup:]

Choose confidence level 1 − α, tolerance level ε`, and threshold index set T
(1)
` for

constraint ` = 1, 2, . . . , s. Also, choose the value of c ∈ N+ and set Θ = {1, 2, . . . , k}
and H(1) = {1, 2, . . . , s}. For ` = 1, . . . , s, set η` such that g(η`) = β`, where β
satisfies (1), and either

(i) β` = (β/s) · I(d` = 1) + [β/(2s)] · I(d` > 1) for ` = 1, 2, . . . , s, or
(ii) β` = β/D; D =

∑s
`=1 min{d`, 2} for ` = 1, . . . , s.

for each system i ∈ Θ do
[Initialization:]
• Obtain n0 observations Yi`1, Yi`2, . . . , Yi`n0

for ` = 1, 2, . . . , s.
• Compute Ȳi`(n0) and S2

i`(n0) for ` = 1, 2, . . . , s.

• Set ri = n0,ON = H(1), and ON` = T
(1)
` for ` = 1, 2, . . . , s.

• Set vUB
i` =∞ and vLB

i` = −∞ for ` = 1, 2, . . . , s.
• Set LASTi` as an empty string for ` = 1, . . . , s.
[Feasibility Check:]
for ` = 1, 2 . . . , s and vUB

i` > vLB
i` do

vLB
i` = max(vLB

i` , Ȳi`(ri) − R(ri; ε`, η`, S
2
i`(n0))/ri). If vLB

i` is updated, set
LASTi` = LB.

vUB
i` = min(vUB

i` , Ȳi`(ri) + R(ri; ε`, η`, S
2
i`(n0))/ri). If vUB

i` is updated, set
LASTi` = UB.

for m ∈ ON` do,
If vUB

i` ≤ q`m, set Zi`m = 1 and ON` = ON` \ {m}.
If vLB

i` ≥ q`m, set Zi`m = 0 and ON` = ON` \ {m}.
end for
If ON` = ∅, set ON = ON \ {`}.

end for
[Stopping Condition:]

If ON = ∅, return Zi`m for ` ∈ H(w) and m ∈ T
(w)
` and save the (final)

random seed(s) for system i. Otherwise, set ri = ri + 1, and, for any ` such
that vUB

i` > vLB
i` , take one additional observation Yi`ri and update Ȳi`(ri). Then

go to [Feasibility Check].
end for

3.2. Pruning Procedure for Later Passes

In this section, we propose a procedure to determine the feasibility for the added
thresholds in the later passes after the first pass is complete. We let w ≥ 2 be the index
of the pass and consider a particular constraint ` ∈ H(w). Recall that the thresholds for
the wth pass need to be selected from the pre-defined threshold set {q`1, q`2, . . . , q`d`}.
That is, the threshold indices for the wth pass satisfy

T
(w)
` ⊆ T` \

(
∪w−1
u=1T

(u)
`

)
.

If the decision maker decides to add a threshold q`m where m ∈ T (w)
` , the feasibility

decision that RF would have made for system i is retrieved during the wth pass. This
is achieved by comparing the values of vUB

i` and vLB
i` with q`m, and only collecting

additional observations if needed (in which case the additional observations would be
collected and employed as in P(1)). We now discuss how we determine feasibility for
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q`m depending on the values of vUB
i` and vLB

i` at the end of pass w − 1 based on three
cases as follows.

Case 1: When vUB
i` ≤ q`m and vLB

i` < q`m (or vLBi` ≥ q`m and vUB
i` > q`m):

If vUB
i` ≤ q`m and vLB

i` < q`m, we immediately declare system i is feasible with respect
to q`m. Similarly, we immediately declare system i is infeasible with respect to q`m if
vLB
i` ≥ q`m and vUB

i` > q`m.

Case 2: When vUB
i` ≤ q`m ≤ vLB

i` :

Although vUB
i` > vLB

i` in general, it is possible that vUB
i` ≤ vLB

i` happens at the time
when feasibility decisions for all thresholds on constraint ` of system i with indices in

T
(w−1)
` are concluded in the previous pass. If an added threshold value q`m satisfies
vUB
i` ≤ q`m ≤ vLB

i` , we need to know which value of vUB
i` and vLB

i` was updated last in
the previous pass. Consider the example in Figure 2 where we use q`m′ to denote the
threshold whose feasibility decisions are made last in pass w − 1. At the last stage
of the feasibility check for constraint ` in the previous pass, we have vUB

i` ≤ vLB
i` .

When the feasibility decision for q`m needs to be retrieved in the current pass, we have
vUB
i` ≤ q`m ≤ vLB

i` and vUB
i` is the last updated value in the previous pass. As shown in

Figure 2, the lower bound of the interval(
Ȳi`(ri`)−R(ri`; ε`, η`, S

2
i`(n0))/ri`, Ȳi`(ri`) +R(ri`; ε`, η`, S

2
i`(n0))/ri`

)
is greater than vLB

i` before the last stage of the previous pass and q`m would have
satisfied vLB

i` ≥ q`m before it satisfied vUB
i` ≤ q`m if q`m had been included in the

previous pass. Thus we should declare system i infeasible with respect to q`m. In
general, when vUB

i` ≤ q`m ≤ vLB
i` , if the last updated value among vUB

i` , vLB
i` in the

previous pass is vUB
i` (i.e., LASTi` = UB), we declare the system infeasible with respect

to q`m and we declare the system feasible with respect to q`m if the last updated value
in the previous pass is vLB

i` (i.e., LASTi` = LB).

ri

q m

q m′

vLB
i

vLB
i

Yi (ri) + R(ri; , , S2
i (n0))/ri

Yi (ri) R(ri; , , S2
i (n0))/ri

Figure 2. Crossing of vUB
i` and vLB

i` on constraint ` when retrieving feasibility decision for threshold q`m,

where m ∈ T (w)
` and w ≥ 2.
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Note that the value of LASTi` can be overwritten when both vLB
i` and vUB

i` are
updated in one stage. For example, we see that the first few observations taken
in Figure 1 result in vUB

i` decreasing and vLB
i` increasing. This means that both

vUB
i` and vLB

i` are updated the same stages and thus LASTi` updates accordingly
(and therefore is overwritten). However, overwriting LASTi` results in values vUB

i`
of Ȳi`(ri) + R(ri; ε`, η`, S

2
i`(n0))/ri and vLB

i` of Ȳi`(ri) − R(ri; ε`, η`, S
2
i`(n0))/ri. Since

R(ri`; ε`, η`, S
2
i`(n0)) takes a non-negative value, it is guaranteed vUB

i` ≥ vLB
i` in such

a case. As the variable LASTi` is only used when vUB
i` ≤ vLB

i` , overwriting the value
of LASTi` in the same stage does not have any unintended consequences for the
feasibility check during the following pass when R(ri; ε`, η`, S

2
i`(n0)) > 0 (and hence

vUB
i` > vLB

i` ). Moreover, when R(ri; ε`, η`, S
2
i`(n0)) = 0 in the final stage of pass w − 1,

overwriting LASTi` implies that vLB
i` = vUB

i` = Ȳi`(ri) and LASTi` = UB; thus, the

system is declared infeasible when implementing P(w). In this case, vUB
i` ≤ q`m ≤ vLB

i`
implies that q`m = vUB

i` = vLB
i` = Ȳi`(ri) and it is easily seen that the value of

Zi`m is also overwritten in Algorithm 1 and thus the system is concluded infeasi-
ble by RF , which matches with the decision from P(w). Furthermore, note that
Ȳi`(ri) = vLB

i` = vUB
i` = qi` occurs with zero probability under Assumption 1.

Case 3: When vLB
i` < q`m < vUB

i` :

If vLB
i` < q`m < vUB

i` , we cannot determine feasibility relative to threshold q`m based
on the data collected in passes 1, . . . , w − 1 and need to take additional observations.
In this case, one needs to use the (final) random seed(s) saved for the system from the
previous pass. This is essential for the proof of statistical validity discussed in Section 4.

We present the description of the retrieving process for pass w ≥ 2, namely P(w),

in Algorithm 3. We determine the values of Zi`m for ` ∈ H(w) and m ∈ T (w)
` in the

wth pass for the feasibility of system i for the corresponding added thresholds q`m.

4. Statistical Validity

We prove the statistical validity of our proposed procedure in this section. We first
address the statistical validity for a single system in Section 4.1 and then discuss the
overall probability of correct decision for multiple systems in Section 4.2.

4.1. Statistical Validity of MPP for a Single System

In this section, we prove the statistical validity of our proposed procedure for a single
system. Recall that Procedure RF makes a decision for each threshold q`m for m ∈ T`
when the interval(
Ȳi`(r)−

R(r; ε`, η`, S
2
i`(n0))

r
, Ȳi`(r) +

R(r; ε`, η`, S
2
i`(n0))

r

)
for r = n0, n0 + 1, . . . ,

does not include the threshold q`m for the first time. We refer to such a stage as the first
exit stage. The following Lemma 4.1 from Zhou et al. (2022) provides the statistical
validity of Procedure RF (shown in Algorithm 1) for a single system.

Lemma 4.1. For system i with s constraints and threshold constants q`m where m ∈
T` for ` = 1, . . . , s, Procedure RF makes a decision for each threshold based on its
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Algorithm 3 Procedure P(w), w ≥ 2

[Setup:]

Decide H(w), the set of constraints that need additional thresholds, for the wth

pass. Choose the indices of the thresholds added, T
(w)
` , for ` ∈ H(w) and set Θ =

{1, 2, . . . , k}.
for each system i ∈ Θ do

[Initialization:]

• Set ON = H(w) and ON` = T
(w)
` for ` ∈ H(w).

• Obtain ri, Ȳi`(ri),LASTi`, v
LB
i` , and vUB

i` for ` = 1, . . . , s from Procedure P(w−1)

and S2
i`(n0) from P(1).

• Obtain the saved seed(s) for system i from Procedure P(w−1) and use it (them)
for generating observations from system i (if needed).

[Initial Feasibility Check:]

for ` ∈ H(w) do
for m ∈ ON` do

If vUB
i` ≤ q`m and vLB

i` < q`m, set Zi`m = 1 and ON` = ON` \ {m};
Else if vLB

i` ≥ q`m and vUB
i` > q`m, set Zi`m = 0 and ON` = ON` \ {m};

Else if vUB
i` ≤ q`m ≤ vLB

i` ,
if LASTi` = UB, set Zi`m = 0 and ON` = ON` \ {m};
if LASTi` = LB, set Zi`m = 1 and ON` = ON` \ {m}.

end for
If ON` = ∅, set ON = ON \ {`}.

end for
[Stopping Condition:]

If ON = ∅, return Zi`m for all ` ∈ H(w) and m ∈ T (w)
` . Otherwise, set ri = ri+1,

and, for any ` such that vUB
i` > vLB

i` , take one additional observation Yi`ri and

update Ȳi`(ri). Then go to [Feasibility Check] of Procedure P(1).
end for

first exit stage and guarantees Pr(∩s`=1CDi`) ≥ 1− β.

The following lemma shows that if RF is implemented for thresholds q`m, where

m ∈ ∪wu=1T
(u)
` (i.e., the thresholds considered through the execution of P(w)), then it

still provides statistical validity.

Lemma 4.2. Procedure RF , executed with respect to q`m, where m ∈ ∪wu=1T
(u)
` , guar-

antees

Pr
(
∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)
≥ 1− β.

Proof. Because ∪wu=1T
(u)
` ⊆ T` and ∩d`m=1CDi`(q`m) ⊆ ∩m∈∪w

u=1T
(u)
`

CDi`(q`m) for ` =

1, 2, . . . , s, we have

Pr
(
∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)
≥ Pr

(
∩s`=1 ∩

d`
m=1 CDi`(q`m)

)
≥ 1− β,

where the second inequality follows from Lemma 4.1.

We use MPP(w) to denote the MPP procedure with w ≥ 1 passes (so that P(u)
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is applied to thresholds q`m, where m ∈ T (u)
` , for u = 1, . . . , w). Now we present the

main theorem that proves that the MPP(w) procedure guarantees statistical validity
by showing that the feasibility decisions of MPP(w) match those of RF with respect

to thresholds q`m, where m ∈ ∪wu=1T
(u)
` and ` = 1, . . . , s.

Theorem 4.3. Given system i with s constraints and index set T` = {1, 2, . . . , d`} for

` = 1, 2, . . . , s, the Multi-Pass Pruning procedure MPP(w) guarantees

Pr
(
∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)
≥ 1− β.

Proof. As RF makes the feasibility decisions at the first exit stage, we prove the
theorem by showing that the feasibility decisions made by the MPP(w) procedure

with respect to threshold q`m where m ∈ ∪wu=1T
(u)
` for ` = 1, . . . , s are identical to

those at the first exit stage, which in turn match the decisions made by RF .
Procedure P(1) sets the implementation parameters β` identical to those of RF for

` = 1, 2, . . . , s. In addition, the two inequalities that determine the values of Zi`m in the
[Feasibility Check] step are essentially identical in the two procedures as well. The
main difference between RF and P(1) is that P(1) keeps updating the values of vUB

i`
and vLB

i` for every constraint ` such that vLB
i` < vUB

i` whenever system i is simulated,
even if ` /∈ ON. However, this difference does not affect the values of Zi`m as ON` = ∅
for ` /∈ ON; thus Zi`m are not updated and RF and P(1) yield the same decisions for

m ∈ T (1)
` and ` = 1, 2, . . . , s.

Let w ≥ 2 and ` be an arbitrary constraint. To avoid the trivial case, we assume
that the decision maker adds thresholds for constraint ` in pass w (i.e., ` ∈ H(w)). We

need to consider five cases for each added threshold q`m, where m ∈ T (u)
` , after the

completion of P(w−1):

(1) If vUB
i` ≤ q`m and vLB

i` < q`m, both MPP(w) and RF declare system i feasible
with respect to q`m by the first exist stage.

Recall that ri is the number of observations collected from system i to conclude
feasibility decisions from all constraints after the completion of P(w−1). It is clear
from Algorithm 3 that MPP(w) declares system i feasible with respect to q`m.
Moreover, if vUB

i` ≤ q`m and vLB
i` < q`m, then there exists n0 ≤ nUB ≤ ri

such that Ȳi`(n
UB) + R(nUB; ε`, η`, S

2
i`(n0))/nUB ≤ q`m but there does not exist

n0 ≤ nLB ≤ ri such that Ȳi`(n
LB)−R(nLB; ε`, η`, S

2
i`(n0))/nLB ≥ q`m. Therefore,

RF also declares system i feasible with respect to q`m.
(2) If vLBi` ≥ q`m and vUB

i` > q`m, both MPP(w) and RF declare system i infeasible
with respect to q`m by the first exist stage.

By similar arguments as in Case 1, the above claim holds.
(3) If vUB

i` ≤ q`m ≤ vLB
i` and LASTi` = UB, both MPP(w) and RF declare system i

infeasible with respect to q`m by the first exist stage.
As stated in Algorithm 3, it is clear that MPP(w) declares system i in-

feasible with respect to threshold q`m. Recall that ri represents the number
of observations from system i from all constraints after the completion of
P(w−1). Since vUB

i` ≤ q`m, there exists n0 ≤ nUB ≤ ri such that Ȳi`(n
UB) +

R(nUB; ε`, η`, S
2
i`(n0))/nUB ≤ q`m. Similarly, due to vLB

i` ≥ q`m, there exists
n0 ≤ nLB ≤ ri such that Ȳi`(n

LB) − R(nLB; ε`, η`, S
2
i`(n0))/nLB ≥ q`m. More-

over, given that LASTi` = UB and LASTi` will not be updated when vUB
i` ≤ vLB

i`
happens, we know that nLB < nUB since vUB

i` was updated later than vLB
i` . There-
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fore, as n0 ≤ nLB < nUB ≤ ri, we see that RF declares system i infeasible with
respect to threshold q`m.

(4) If vUB
i` ≤ q`m ≤ vLB

i` and LASTi` = LB, both MPP(w) and RF declare system i
feasible with respect to q`m.

By similar arguments as in the previous case, Case 4 holds.
(5) Finally, if vLB

i` < q`m < vUB
i` , MPP(w) takes more observations and reaches the

same decision made by RF .
Based on Algorithm 3, it is clear that MPP(w) needs more than the ri ob-

servations obtained all previous passes (i.e., passes 1 through w − 1) and addi-
tional observations are generated using the saved random seeds from pass w−1.
Given that vLB

i` < q`m < vUB
i` , there does not exist n0 ≤ nUB ≤ ri such that

Ȳi`(n
UB) +R(nUB; ε`, η`, S

2
i`(n0))/nUB ≤ q`m nor n0 ≤ nLB ≤ ri such that

Ȳi`(n
LB)−R(nLB; ε`, η`, S

2
i`(n0))/nLB ≥ q`m,

which implies that RF also has not made a feasibility decision for q`m after
taking ri observations. Thus, both MPP(w) and RF proceed to obtain the
same observations until they reach the first exit stage for q`m and make the
same feasibility decision.

Putting all five cases together proves thatMPP(w) makes the same decisions asRF
when RF is implemented for the threshold q`m where m ∈ ∪wu=1T

(u)
` for ` = 1, . . . , s.

By Lemma 4.2, we know that RF guarantees

Pr
(
∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)
≥ 1− β

and so does MPP(w).

4.2. Statistical Validity of MPP for Multiple Systems

In this section, we extend Theorem 4.3 to the general case with multiple systems and
multiple constraints.

Theorem 4.4. Given pre-defined threshold sets {q`1, q`2, . . . , q`d`} for ` = 1, 2, . . . , s,

the Multi-Pass Pruning procedure MPP(w) guarantees

Pr
(
∩ki=1 ∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)
≥ 1− α.

Proof. When systems are simulated with CRN, we have

PCD = Pr
(
∩ki=1 ∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)

≥ 1−
k∑
i=1

(
1− Pr

(
∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
))

≥ 1− kβ = 1− kα
k

= 1− α,

where the first inequality follows from the Bonferroni inequality, the second inequality
holds due to Theorem 4.3, and the second equality holds due to equation (1).

15



Similarly, when systems are simulated independently, we have

PCD = Pr
(
∩ki=1 ∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)

=

k∏
i=1

Pr
(
∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)

≥ (1− β)k = (1− (1− (1− α)1/k))k = 1− α,

where the inequality holds due to Theorem 4.3 and the third equality follows by
equation (1).

5. Experiments

In this section, we provide numerical results to demonstrate the performance of our
proposed procedure compared with that of RF . We first test whether the feasibility
decisions of chosen thresholds concluded by MPP are identical to those by RF in
Section 5.1, where all possible thresholds are included throughout two passes forMPP
and thus no pruning occurs. We then compare the performance of the two procedures
in terms of the number of replications in Section 5.2, where the thresholds chosen
for different passes of MPP are chosen adapatively and designed to prune inferior
systems.

Each experiment is repeated 10,000 times with α = 0.05. The initial sample size
is n0 = 20 except we also consider other values of n0 in Section 5.2.2. The tolerance
level is set ε` = 1/

√
n0 for all ` = 1, . . . , s for Sections 5.1 and 5.2.1 and as specified

in Sections 5.2.2 and 5.2.3. We report how many times RF andMPP have the same
feasibility decisions for thresholds considered by MPP in the experiments. As stated
in Algorithms 2 and 3, whenever we perform feasibility checks for the thresholds on
one constraint, we collect observations across all constraints from that system and one
replication refers to one set of observations collected across all constraints. To mea-
sure efficiency, we use REP(u) to denote the average number of replications obtained
during the execution of Procedure P(u), where u = 1, . . . , w. Note that REP(u) is only
applicable for our multi-pass procedure. We also let REP denote the overall average
number of replications throughout the experiments (this applies to both MPP and
RF). Since Zhou et al. (2022) report that the correlation between the primary and
secondary performance measures does not have a significant impact on the experi-
mental results, we assume the observations for all performance measures from each
system are independent when s > 1. Furthermore, given that Zhou et al. (2022) report
that applying CRN does not benefit feasibility checks for subjective constraints, we
consider independent systems. Finally, d` > 1 for ` = 1, . . . , s, throughout all of our
experiments. This implies that approaches (i) and (ii) of selecting β` in Algorithms 1
and 2 are the same for all ` = 1, . . . , s.

5.1. Statistical Validity

To show that the decisions of RF andMPP(w) are identical, we consider one system
with two constraints and w = 2. The mean performance of the system with respect to
the two constraints is set to yi,1 = yi,2 = 0, and the variances are set as σ2

i,1 = σ2
i,2 = 1.
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We let both constraints have four thresholds as q`1 = −3ε`, q`2 = −ε`, q`3 = ε`, and
q`4 = 3ε` where ` = 1, 2.

We test all thresholds for RF . For MPP(2), we consider three different scenarios
as below:

• Scenario 1: T
(1)
1 = {1, 4}, T (1)

2 = {2, 3}, T (2)
1 = {2, 3}, and T

(2)
2 = {1, 4};

• Scenario 2: T
(1)
1 = T

(1)
2 = {1, 4}, and T

(2)
1 = T

(2)
2 = {2, 3};

• Scenario 3: T
(1)
1 = T

(1)
2 = {2, 3}, and T

(2)
1 = T

(2)
2 = {1, 4}.

Note that Scenario 1 concerns the difference in the difficulty of the feasibility checks
between the two constraints. More specifically, the feasibility check for the first (sec-
ond) constraint is easy (difficult) during P(1), while it is the opposite for P(2). The
overall difficulty for P(1) and P(2) is the same. On the other hand, Scenarios 2 and 3
address the difference between the two passes, where Scenario 2 (3) has a relatively
easier first (second) pass. During each pass, the overall difficulty for both constraints
is the same.

Among the total 10,000 repeated runs, we count the number of runs when the
feasibility decisions with respect to all thresholds tested match exactly for RF and
MPP(2). Table 1 shows the ratio of the runs that have all decisions matched along with
the estimated PCD for the two procedures. We also report REP(1),REP(2), and REP.
As all possible thresholds are tested (rather than excluding unnecessary thresholds)

throughout the execution of MPP(2), we expect that REP(1) + REP(2) = REP for
MPP(2) and report the ratio of the runs with the same total number of replications.

Table 1. Average number of replications and estimated PCD for k = 1 system and s = 2 constraints for RF
and MPP(2), where MPP(2) is tested under three scenarios.

MPP(2) MPP(2) MPP(2) RF
Scenario 1 Scenario 2 Scenario 3

PCD 0.9583 0.9583 0.9583 0.9583
Ratio of matched decisions 100%

REP(1) 79.44 37.82 95.17 —

REP(2) 15.73 57.36 0.00 —
REP 95.17 95.17 95.17 95.17

Ratio of matched REP 100%

Table 1 shows that the two procedures have exactly the same feasibility decisions
and use the same total number of replications as expected. Comparing the results of
MPP(2) under the three scenarios, we see that Scenario 2 has the lowest REP(1) and
Scenario 3 achieves the highest REP(1). This is expected since Scenario 1 has the eas-
iest first pass among the three scenarios (two easy constraints) while Scenario 3 has
the most difficult first pass (two hard constraints). Similarly, as Scenario 1 has a more
(less) difficult first pass compared with Scenario 2 (3) (because Scenario 1 has one
difficult and one easy constraint), we also see that Scenario 1 has a larger (smaller)

REP(1) compared with Scenario 2 (3). Furthermore, as the number of effective thresh-
olds per constraint is at most two (see Theorem 2.1), it is clear that Scenario 1 requires
additional replications for the second constraint but not for the first constraint during
the second pass (as the second pass adds more difficult (easier) thresholds for the first
(second) constraint). For similar reasons, Scenario 2 is expected to require more repli-
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cations for both constraints, whereas Scenario 3 is not expected to require additional
replications for either constraint. This matches with the results that Scenario 2 has a
higher REP(2) than Scenario 1 and Scenario 3 incurs a zero REP(2).

5.2. Efficiency

We show the efficiency ofMPP compared to RF in this section when the main goal is
to prune inferior systems by finding feasible systems with respect to the most preferred
thresholds possible. Section 5.2.1 considers multiple systems with a single constraint,
and Section 5.2.2 provides results in cases where MPP yields large savings. Finally,
Section 5.2.3 addresses the efficiency of MPP compared with RF when multiple
systems and two constraints are considered in an inventory example (as described in
Section 1).

Since the thresholds tested by MPP(w) may be a subset of all possible thresholds,

we let P̃CD be the probability of correct decision with respect to the thresholds tested
for RF or MPP(w), i.e.,

P̃CD =

{
PCD, for RF ,
Pr
(
∩ki=1 ∩s`=1 ∩m∈∪w

u=1T
(u)
`

CDi`(q`m)
)
, for MPP(w).

We report the estimated P̃CD in our experimental results.

5.2.1. Systems with One Constraint

We consider k = 100 systems with a single constraint and 100 thresholds (i.e., d1 =
100). We set the difference between two consecutive thresholds to 2ε1, i.e., q1,m =
(2m− 1)ε1 where m = 1, . . . , 100. We assume that the decision maker prefers systems
with smaller means.

As MPP(2) only tests a subset of thresholds through each pass and adds thresh-
olds in the second pass depending on the feasibility decisions obtained in the first
pass, it will perform feasibility checks with respect to a restricted set of thresholds
that are close to the means of the potential best systems throughout the two passes.
On the other hand, RF collects observations for all systems with respect to all possible
thresholds considered, regardless of whether it is unnecessary to conclude feasibility
decisions for some of the thresholds. We use the Concentrated Mean (CM) configura-
tion to demonstrate the case when the mean of all systems are the same except for
the best system and the common mean of all inferior systems is quite far from the
mean of the best system. This configuration benefits MPP(2) as MPP(2) is likely
to identify the smallest threshold that the best system is declared feasible to and use
it to prune all inferior systems (as the mean difference between inferior systems and
the best system is large, the pruning becomes easy), whereas RF can spend more
observations to conclude feasibility decisions for all the inferior systems with respect
to their closest thresholds. To be more practical, we also consider a Monotonically
Increasing Means (MIM) configuration where there is one system in each intersection
of the unacceptable and desirable regions of two consecutive thresholds. Specifically,
we set the mean configurations as follows:

• CM: y1,1 = 0 and yi,1 = 198ε1 for i = 2, . . . , k.
• MIM: yi1 = 2(i− 1)ε1 for all i = 1, . . . , k.
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For RF , we test all 100 thresholds together in one run. For P(1) of MPP(2), we

consider thresholds {q1,10, q1,20, . . . , q1,80, q1,90}, i.e., T
(1)
1 = {10, 20, . . . , 90}. Based on

the feasibility decisions with respect to the thresholds from P(1), if there is only one
system declared feasible with respect to the tightest threshold, we terminate and se-
lect the single system as the best system. On the other hand, if there are multiple
systems declared feasible with respect to the tightest threshold, we consider nine even
tighter thresholds compared to this threshold. For example, if there are multiple sys-
tems declared feasible with respect to threshold q1,10, we add {q1,1, q1,2, . . . , q1,9} (with

T
(2)
1 = {1, 2, . . . , 9}) for P(2).

Table 2 presents the results of the estimated P̃CD, the ratio of matched feasibility

decisions for thresholds in T
(1)
1 ∪ T (2)

1 over 10,000 repeated runs, and the number of

replications required forMPP(2) and RF under the CM and the MIM configurations.
Table 3 shows the average number of feasible systems declared by MPP(2) with re-
spect to the tightest threshold considered in P(1) and P(2) under both the CM and
MIM configurations. As none of the 10,000 replications execute P(2) under the CM
configuration, we do not report this value in Table 3.

Table 2. Average number of replications and estimated P̃CD for k = 100 systems and s = 1 constraint under
the CM configuration.

CM MIM

MPP RF MPP RF

P̃CD 1.000 0.9570 0.9922 0.9638
Ratio of matched decisions 100% 100%

REP(1) 2,009.86 — 6,065.56 —

REP(2) 0.00 — 1,391.22 —
REP 2,009.86 18,494.22 7,456.78 18,494.24

Table 3. Average number of surviving systems throughout the execution of MPP.

CM MIM

P(1) 1.00 10.00

P(2) — 1.00

We first discuss our results under the CM configuration. We see that bothMPP(2)

and RF guarantee statistical validity. MPP(2) achieves a higher P̃CD than RF be-
causeMPP(2) only needs to guarantee the correct decisions for a subset of the thresh-
olds while RF ’s PCD is with respect to all 100 thresholds. In terms of the subset of
thresholds tested for bothMPP(2) and RF , the feasibility decisions are matched per-
fectly at 100% throughout 10,000 repeated runs. In terms of the required replications
to conclude the feasibility decisions, we observe that MPP(2) requires only 10.87%
of the replications RF used. This significant reduction is expected as RF performs
feasibility checks with respect to all thresholds considered, whereasMPP(2) only tests
preferred thresholds and saves unnecessary replications needed to declare feasibility
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with respect to clearly less preferred thresholds. More specifically, we see from Table
3 that there is only one system declared feasible to the tightest threshold, and thus,
MPP(2) does not require the second pass.

Overall, we observe a similar tendency for the MIM configuration as in the CM
configuration. The main difference is thatMPP(2) requires 40.32% of the replications
RF used, and this savings is relatively smaller than that from the CM configuration
as expected. Note that the MIM configuration has systems spread out evenly over the
100 thresholds, while the majority of systems in the CM configuration are only feasible
to the least preferred threshold. As shown in Table 3, P(1) identifies an average of 10
feasible systems to the tightest threshold under the MIM configuration while identifies
only one feasible system under the CM configuration. This means that with the same
subset of thresholds chosen in P(1), the MIM configuration is more likely to require
the second pass in order to further prune inferior systems, and thus, requires more
replications than the CM configuration.

One may also notice that RF achieves similar REP under both the CM and the
MIM configurations. Although the systems’ means are set differently, RF essentially
declares feasibility with respect to one effective threshold for the best system (i.e.,
ε1) and two effective thresholds for all inferior systems (i.e., yi,1 − ε1 and yi,1 + ε1) as
discussed in Zhou et al. (2022). Thus, it is expected that RF results in a similar REP
under both configurations.

5.2.2. Systems with Large Savings

Section 5.2.1 shows that when inferior systems are pruned,MPP achieves significant
savings compared with RF . In this section, we demonstrate that the savings ofMPP
can be huge in certain settings.

We consider the CM mean configuration as described in Section 5.2.1 for a single
constraint case. We see that to identify the best system, a feasibility decision is basi-
cally needed for one critical threshold, i.e., any threshold that is in between the best
and second best system means. In this case, MPP only requires one pass to achieve

the objective (i.e., w = 1) and the decision maker chooses T
(1)
1 = {50} (i.e., the thresh-

old in the middle of the best system mean and the mean of all inferior systems). She
considers all thresholds for RF . The difficulty of the feasibility checks of a specific con-
straint depends highly on the number of systems k considered and on the minimum
distance between the thresholds and the systems’ means (ε1 for RF). In the following
experiments, we adjust the values of k and ε1 to further test how these factors affect
the relative performance of MPP and RF . More specifically, we use CM(k, ε1) to
denote the CM configuration where k systems and tolerance level ε1 are considered.
Table 4 presents the results when k ∈ {100, 1000, 10000} and ε1 = 1/

√
n0 ≈ 0.22 and

Table 5 shows the results when ε1 ∈ {1/
√
n0, 0.1, 0.05} and k = 100.

Table 4. Average number of replications and estimated P̃CD for MPP(1), where ε1 = 1/
√
n0 and k ∈

{100, 1000, 10000}.

CM(100, 1/
√
n0) CM(1000, 1/

√
n0) CM(10000, 1/

√
n0)

MPP(1) RF MPP(1) RF MPP(1) RF

P̃CD 1.000 0.957 1.000 0.954 1.000 0.956
Ratio of matched decisions 100% 100% 100%

REP 2,000.00 18,494.24 20,000.00 268,895.14 200,000.00 3,741,675.70
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Table 5. Average number of replications and estimated P̃CD for MPP(1), where k = 100 and ε1 ∈
{1/√n0, 0.1, 0.05}.

CM(100, 1/
√
n0) CM(100, 0.1) CM(100, 0.05)

MPP(1) RF MPP(1) RF MPP(1) RF

P̃CD 1.000 0.957 1.000 0.976 1.000 0.975
Ratio of matched decisions 100% 100% 100%

REP 2,000.00 18,494.24 2,007.47 91,852.00 4,713.99 366,307.30

From Table 4, we see that MPP(1) requires only 10.81%, 7.44%, 5.35% REP com-
pared of that of RF when k = 100, 1000, 10000 and ε1 = 1/

√
n0, respectively. As

RF spends unnecessary replications trying to conclude feasibility decisions with re-
spect to all thresholds for all systems while MPP(1) only performs feasibility check
with respect to one critical threshold to identify the best system, the huge savings of
MPP(1) is expected. We further note thatMPP(1) stops in all cases after taking the
minimum number n0 = 20 replications per system. Therefore, we test n0 ∈ {5, 10} and
ε1 = 1/

√
20 as well. To conserve space, we do not include the detailed results here,

but for n0 = 10, MPP(1) only uses 3.32%, 2.00%, 1.55% REP compared to RF , and
for n0 = 5, these percentages become 1.47%, 1.47%, 1.48% for k = 100, 1000, 10000,
respectively.

We also see from Table 5 thatMPP(1) uses 10.81%, 2.19%, 1.29% REP compared of
that of RF when n0 = 20, k = 100, and ε1 = 1/

√
n0, 0.1, 0.05, respectively. We again

consider n0 ∈ {5, 10} but omit the details for reasons of brevity. For n0 = 10, these
percentages become 3.32%, 1.37%, 1.33%, and for n0 = 5, they are 1.47%, 1.42%, and
1.42% for ε1 = 1/

√
20, 0.1, 0.05, respectively. In conclusion, the results in this section

show that MPP can achieve huge savings compared with RF , especially when the
number of systems and thresholds considered are large and take wide ranges of values.

5.2.3. Inventory Example

In this section, we demonstrate the performance of MPP(3) based on an (s, S) in-
ventory example as discussed in Section 1. We consider a similar problem setting
as in Koenig and Law (1985), also tested in Zhou et al. (2022), where one review
period is one month and the performance measures are estimated using the first
30 months. The two performance measures are the same as in Section 1, namely
the probability that a shortage occurs during each review period (` = 1) and the
expected cost per review period (` = 2). The expected cost includes the ordering
cost, holding cost, and penalty cost when the demand is more than the inventory
level. We set the ordering cost as 3 per item and a fixed cost of 32 per order. The
holding cost is set as 1 per item between each pair of consecutive periods, and the
penalty cost is 5 per item of each unsatisfied demand. The demand during each pe-
riod is assumed to follow a Poisson distribution with mean 25. We assume demands
over different review periods are independent. We consider 2,901 systems in total as
Θ = {(s, S) | 20 ≤ s ≤ 80, 40 ≤ S ≤ 100, s ∈ Z+, S ∈ Z+, and s ≤ S}. To reduce the
initialization bias, both performance measures are computed after the first 100 review
periods and averaged over the subsequent 30 review periods. We obtain analytical re-
sults for both performance measures using an steady-state analysis of a Markov chain
model. We estimate the correlation between the two performance measures among all
2,901 systems using simulation with 1,000,000 replications. The estimated correlations
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range from -0.235 to 0.553.
We consider the same threshold setting as discussed in Section 1, where q1 takes

values in {0.01+0.01γ | 0 ≤ γ ≤ 19, γ ∈ Z} and q2 takes values in {115+0.5γ | 0 ≤ γ ≤
120, γ ∈ Z} thousands (20 values for q1 and 121 values for q2). We include all thresholds

from both constraints for RF . To choose the thresholdsMPP(3) uses to prune inferior
systems in this multi-objective setting, we utilize the concept of preference order in-
troduced in Zhou, Andradóttir, and Kim (2023). Preference order is used to describe
how the decision maker prioritizes different constraints based on the given thresh-
olds on each constraint. Zhou, Andradóttir, and Kim (2023) propose three preference
orders, namely the ranked constraints, equally important constraints, and the total vi-
olation with ranked constraints formulations. In this section, we focus on the equally
important constraints formulation, where the decision maker values both constraints
equally and would like to tighten (relax) both constraints at the same time if multiple
(no) feasible systems are identified with respect to the more (less) preferred threshold
combination. More specifically, we first consider thresholds q1 ∈ {0.01, 0.1, 0.2} and
q2 ∈ {115, 145, 175} for P(1). If multiple systems are declared feasible to the most pre-
ferred possible threshold combination, we tighten both constraints by adding thresh-
olds on a finer level such that q1 is chosen with an increment of 0.05 and q2 with an
increment of 5 for P(2). Similarly, we consider an even finer level of thresholds in P(3)

by choosing q1 at an increment of 0.01 and q2 at an increment of 0.5. For example, if
multiple feasible systems are identified by P(1) with respect to threshold combinations
(q1, q2) = (0.1, 145), (0.01, 175), and (0.1, 115), but no systems are declared feasible
with respect to combination (q1, q2) = (0.01, 115), then consistent with the equally
important constraints formulation, we choose (0.1, 145) as the most preferred thresh-
old combination and add thresholds q1 ∈ {0.05} and q2 ∈ {120, 125, 130, 135, 140}
for P(2). If multiple feasible systems are further identified with respect to threshold
combination (q1, q2) = (0.05, 120), we add q1 ∈ {0.01 + 0.01γ | 1 ≤ γ ≤ 3, γ ∈ Z} and

q2 ∈ {115 + 0.5γ | 1 ≤ γ ≤ 9, γ ∈ Z} for P(3). This is equivalent to setting T
(1)
1 =

{1, 10, 20}, T (1)
2 = {1, 61, 121}, T (2)

1 = {5}, T (2)
2 = {11, 21, 31, 41, 51}, T (3)

1 = {2, 3, 4},
and T

(3)
2 = {2, 3, 4, 5, 6, 7, 8, 9, 10}.

To get a sense of the number of feasible systems with respect to different thresh-
old combinations, we present Table 6 for the number of feasible systems with respect
to 5 × 13 = 65 of the 20 × 121 = 2420 combinations of thresholds of both con-
straints based on their analytical values. As feasible systems are likely to be iden-
tified with respect to threshold combination (q1, q2) = (0.1, 145) after the comple-
tion of P(1) and are also likely to be identified with respect to (q1, q2) = (0.05, 120)
throughout P(2), we further include Table 7 to show the number of feasible sys-
tems with respect to the threshold combinations, where q1 ∈ {0.01, 0.02, . . . , 0.05}
and q2 ∈ {115, 115.5, 116, . . . , 119.5, 120}. Note that we do not present the analytical
values for all 2420 combinations (as discussed in Section 1) for simplicity.

Due to the nature of the two constraints (shortage probability is likely between
0.9 to 1 and the expected cost is likely between 110 to 180), we set the tolerance-
level for the shortage probability constraint as ε1 = 0.001 and for the expected cost

constraint as ε2 = 0.1. Table 8 presents the estimated P̃CD and the average number
of replications needed for the MPP(3) and RF procedures as well as the ratio of the
matched feasibility decisions.

Similar to Sections 5.2.1 and 5.2.2, both MPP(3) and RF guarantee statistical
validity even though Assumption 1 is violated due to the observations on each con-
straint not being normally-distributed. We also see that MPP(3) results in a slightly
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Table 6. Number of feasible systems with respect to a grid of 65 combinations of constraint thresholds.

q1

q2 115 120 125 130 135 140 145 150 155 160 165 170 175

0.01 0 31 221 563 914 1210 1470 1705 1902 2052 2176 2265 2317
0.05 31 178 526 923 1274 1570 1830 2065 2262 2412 2536 2625 2677
0.1 74 309 675 1081 1432 1728 1988 2223 2420 2570 2694 2783 2835
0.15 94 345 711 1117 1468 1764 2024 2259 2456 2606 2730 2819 2871
0.2 108 364 730 1136 1487 1783 2043 2278 2475 2625 2749 2838 2890

Table 7. Number of feasible systems with respect to a finer grid of 55 threshold combinations.

q1

q2 115 115.5 116 116.5 117 117.5 118 118.5 119 119.5 120

0.01 0 0 0 0 0 1 5 12 17 27 31
0.02 0 0 2 8 15 23 31 40 47 61 67
0.03 6 10 18 27 36 45 56 67 77 92 104
0.04 18 24 34 44 56 65 79 91 102 125 142
0.05 31 38 49 60 73 84 99 117 130 158 178

Table 8. Average number of replications and estimated P̃CD for the inventory example.

MPP(3) RF

P̃CD 0.966 0.964
Ratio of matched decisions 100%

REP(1) 4,648,089 —

REP(2) 9,123,765 —

REP(3) 6,210,287 —
REP 19,982,140 65,293,513

higher P̃CD compared with RF since MPP(3) only needs to guarantee correct de-
cision for a subset of the thresholds while RF guarantees correct decisions for all
possible thresholds.MPP(3) achieves huge savings by only requiring about 30.60% of
the replications compared with RF . The values of REP(1),REP(2), and REP(3) likely
depend on the difficulty of each pass and the number of replications collected already
in previous passes. For each pass, the difficulty mainly depends on the number of sur-
viving systems and whether the system means are close to the thresholds considered
(see additional discussion in Section 5.2.2). Pass 1 is easy in general. Although we
need to run replications from all 2,901 systems, the thresholds are easy to test (be-
cause many systems have means that are far from the thresholds considered, see Table
6). Pass 2 considers more preferred thresholds and tests only surviving systems from
Pass 1, and thus, those thresholds can be closer to the surviving systems’ means for
the two constraints, which makes the feasibility checks more difficult. Also, since Pass
1 is relatively easy, the number of collected replications so far is not large, and hence
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does not benefit Pass 2 significantly. This explains why REP(2) is higher than REP(1).
Similar reasons apply to Pass 3, except with fewer surviving systems and many repli-
cations that Pass 3 can utilize from Passes 1 and 2, and hence Pass 3 does not require
as many additional replications as Pass 2.

6. Conclusion

We consider the problem of pruning inferior systems among finitely many simulated
systems using subjective stochastic constraints with sequentially added thresholds.
When some systems are concluded feasible with respect to preferred thresholds, the
decision maker can prune systems that are declared infeasible to those thresholds
in order to avoid collecting unnecessary observations from the inferior systems. We
propose an indifference-zoneMPP procedure that initially tests a subset of thresholds
and allows thresholds to be added sequentially if needed without requiring much data
storage. We prove thatMPP guarantees statistical validity and show by experiments
that it can achieve large savings in terms of the required replications compared with
RF if the decision maker aims to prune inferior systems using subjective constraints.
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