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We consider the problem of finding a system with the best primary performance measure among a finite number of simulated
systems in the presence of subjective stochastic constraints on secondary performance measures. When no feasible system exists,
the decision maker may be willing to relax some constraint thresholds. We take multiple threshold values for each constraint as
a user’s input and propose indifference-zone procedures that perform the phases of feasibility check and selection-of-the-best
sequentially or simultaneously. Given that there is no change in the underlying simulated systems, our procedures recycle
simulation observations to conduct feasibility checks across all potential thresholds. We prove that the proposed procedures
yield the best system in the most desirable feasible region possible with at least a pre-specified probability. Our experimental
results show that our procedures perform well with respect to the number of observations required to make a decision, as
compared with straight-forward procedures that repeatedly solve the problem for each set of constraint thresholds, and that our
simultaneously-running procedure provides the best overall performance.
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1 INTRODUCTION
We consider the problem of selecting the best or near-best system with respect to a primary performance measure
among a finite number of simulated systems while also satisfying stochastic constraints on one or more secondary
performance measures. When no feasible system exists with respect to a given set of threshold values, the decision
maker may be willing to relax the threshold values of some constraints so that a feasible system can be found. In
that sense, constraints with multiple thresholds can be considered as subjective constraints. The decision maker
is often uncertain about the values of performance measures of simulated systems. Thus the decision maker may
prefer tight threshold values, but may worry that the desired thresholds will lead to infeasibility and settle for
weaker thresholds. Alternatively, the decision maker can start with the desired thresholds and relax them until
at least one feasible system is found. Or, she can start with the most relaxed thresholds and tighten them until
no feasible system exists. This iterative approach can be tedious and time-consuming. Our approach allows the
decision maker to consider several sets of thresholds at the same time, with statistical validity, and hence removes
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the need for both trade-offs between feasible and desirable, and for iteratively considering different thresholds. We
illustrate this problem with an example.

Suppose a decision maker wants to design an inventory policy such that the expected fill rate within each review
period is maximized. She considers using an (𝑠, 𝑆) inventory policy (namely ordering products to increase the
inventory level up to 𝑆 when the inventory level at a review period is below 𝑠 and placing no order, otherwise). Two
constraints exist, namely the probability that a shortage occurs between two successive review periods should be
less than or equal to 𝑞1 = 1% and the expected cost per review period should be less than or equal to 𝑞2, where the
value of 𝑞2 is small. The decision maker thinks 𝑞2 = $100 is small but is willing to relax the threshold to $105 or
$110 if no feasible system can be found with 𝑞2 = $100. If there is still no feasible systems with respect to 𝑞2 =

$110, then the decision maker is willing to raise the threshold 𝑞1 to 5%, still with three possible values for 𝑞2.
Ranking and selection (R&S) aims to identify a system with the best performance among finitely many systems

whose performances are estimated by stochastic simulation. [13] and [10] provide literature reviews on R&S. When
the problem requires not only selecting the best system with respect to a primary performance measure but also
determining the feasibility with respect to stochastic constraints on secondary performance measures, it becomes
constrained R&S. There are three major approaches to solving constrained R&S, namely the indifference-zone (IZ)
approach, the optimal computing budget allocation (OCBA) approach, and the Bayesian approach. [17], [11], and
[18] propose sampling frameworks that approximate the OCBA considering stochastic constraints. [21] proposes a
sequential policy from the Bayesian approach for allocating simulation effort to determine a set of systems with
mean performance exceeding a threshold. For the IZ approach, the decision maker usually needs to specify an
IZ parameter, which corresponds to the smallest significant difference of a performance measure that she values
(see a discussion in Section 2.2). [3] proposes a fully sequential procedure that finds a set of feasible systems
given multiple constraints. [1] proposes procedures that select the best with respect to the primary performance
measure among a finite number of simulated systems in the presence of a single stochastic constraint on a secondary
performance measure. [9] applies the concept of dormancy to efficiently solve constrained R&S and [8] proposes
procedures to select the best in the presence of multiple constraints.

For constrained R&S, if each constraint has one fixed threshold value, procedures due to [1] or [8] can be used.
When the decision maker is willing to consider multiple threshold values, one may consider iteratively applying
those procedures “from scratch” to each set of thresholds. However, this wastes all the information from the
previous constrained R&S problems and becomes computationally inefficient. Given that there is no change in the
simulation model of each system, a natural idea is to recycle simulation observations for constrained R&S with
different thresholds. The idea of recycling simulation observations for computer experiments is proposed in [6].
However, they focus on estimation rather than comparison. [22] proposes a procedure that performs feasibility
determination when the decision maker wants to consider multiple threshold values on each constraint. They use
the idea of recycling simulation observations and perform feasibility determination simultaneously with respect to
all thresholds so that the overall required number of observations is reduced. However, their focus is on feasibility
determination rather than on finding the best feasible system in the presence of subjective constraints.

In this paper, we adopt the concept of recycling simulation observations in the context of constrained R&S when
constraint thresholds vary. We provide fully sequential procedures that return the best feasible system with respect
to the most preferred threshold values possible, where the preference order among thresholds is specified by the
user. The threshold values for constraints are relaxed until there is at least one feasible solution. We prove that our
procedures achieve a desired overall probability of correct selection and also perform well in reducing the required
number of observations until a decision is made compared with straight-forward repeating procedures, namely
applying the procedures of [1] or [8] iteratively to each possible set of threshold values depending on whether the
problem has a single constraint or multiple constraints.

It is worth mentioning that, besides the formulation of constrained R&S, there are two other approaches for
dealing with multiple performance measures. A frequently used approach is to aggregate multiple objectives
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into a single objective by applying weights or a utility function, as discussed in [4]. However, determining the
appropriate weights or utility function can be tricky, particularly when the units of the objectives differ (e.g., costs
and probabilities). Furthermore, the optimal solution may vary as the weights or utility function changes. Another
approach is to identify a Pareto set, which comprises non-dominated solutions for multiobjective optimization
problems. A number of ranking and selection procedures have been developed to find Pareto sets for stochastic
multi-objective problems, including [16], [5], [7], and [2]. However, identifying the Pareto set may not be the
most practical formulation for real-world problems because it can include several alternatives that excel in one
performance measure while severely compromising other performance measures. Such extreme systems are unlikely
to appeal to the decision maker. In addition, the Pareto frontier could consist of a large number of systems, leaving
the decision maker with the challenge of identifying all non-dominated systems before eventually selecting one
among the many systems present on the Pareto frontier for implementation. Our formulation overcomes this issue
with the Pareto set formulation, as discussed in further detail in Sections 2.1 and 5.

The rest of the paper is organized as follows: Section 2 provides the background for our problem. Sections 3 and
4 propose and analyze sequentially-running and simultaneously-running procedures, respectively, for the feasibility
check and comparison phases. Section 5 discusses three major preference orders of the constraint thresholds. In
Section 6, we present numerical results for the proposed procedures and compare their performances with the
straight-forward procedures that apply existing constrained R&S procedures repeatedly to each set of thresholds.
Concluding remarks are provided in Section 7.

2 BACKGROUND
In this section, we formulate our problem in Section 2.1 and discuss how we define the correct selection event in
Section 2.2. The assumptions for the statistical validity of our proposed procedures are presented in Section 2.3.

2.1 Problem Formulation
We consider 𝑘 systems whose primary performance measures, as well as 𝑠 secondary performance measures, can be
estimated through stochastic simulation. Let Γ denote the index set of all possible systems (i.e., Γ = {1, . . . , 𝑘}). Let
𝑋𝑖𝑛 be the observation associated with the primary performance measure of system 𝑖 from replication 𝑛, and 𝑌𝑖ℓ𝑛 be
the observation associated with the ℓth stochastic constraint of system 𝑖 from replication 𝑛, where ℓ = 1, . . . , 𝑠. We
also define the expected values of the primary and secondary performance measures for each system 𝑖 ∈ Γ and
constraint ℓ = 1, . . . , 𝑠 as 𝑥𝑖 = E[𝑋𝑖𝑛] and 𝑦𝑖ℓ = E[𝑌𝑖ℓ𝑛], respectively. Constrained R&S is to select

arg max𝑖∈Γ 𝑥𝑖
s.t. 𝑦𝑖ℓ ≤ 𝑞ℓ for all ℓ = 1, . . . , 𝑠,

where 𝑞ℓ denotes the constraint threshold for constraint ℓ .
For a given threshold vector q = (𝑞1, . . . , 𝑞𝑠 ), procedures due to [1] can be used to find the best system if there is

only one constraint. If there are multiple constraints, procedures due to [8] are suitable. In this paper, we assume
that the decision maker has a list of possible threshold values in consideration for each constraint and hopes to
select the best system with respect to the most preferable thresholds possible. We further assume that 𝑘 ≥ 2 in this
paper. We let 𝑑ℓ denote the number of distinct threshold values and 𝑞ℓ,𝑚 denote the 𝑚th distinct threshold value on
constraint ℓ , where𝑚 = 1, . . . , 𝑑ℓ and ℓ = 1, . . . , 𝑠. We assume 𝑞ℓ,1 < · · · < 𝑞ℓ,𝑑ℓ , where ℓ = 1, . . . , 𝑠.

The threshold values for individual constraints are combined into an ordered list of vectors of threshold values
{q(1) , q(2) , . . . , q(𝑑) }, where 𝑑 denotes the total number of threshold vectors that the decision maker is interested to
test. We assume that q(1) is preferred to q(2) , q(2) is preferred to q(3) , and so on. For the implementation of our
procedures, a decision maker can input (i) the ordered list of threshold vectors, or (ii) an ordered list of threshold
values for each constraint and a mechanism for constructing an ordered list of threshold vectors from the inputted
threshold values (see Section 5). We let 𝑞 (𝜃 )

ℓ
be the threshold value on constraint ℓ in q(𝜃 ) , where 𝜃 = 1, . . . , 𝑑 and
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ℓ = 1, . . . , 𝑠. Then we introduce the threshold index vector 𝑰 (𝜃 ) to include the indices of the threshold values that
form q(𝜃 ) . Similar to the definition of 𝑞 (𝜃 )

ℓ
, 𝐼 (𝜃 )

ℓ
represents the threshold index on constraint ℓ in q(𝜃 ) .

Consider the example of selecting the best inventory control policy discussed in Section 1. Then 𝑠 = 2, 𝑑1 = 2
(i.e., two threshold values for the first constraint), 𝑑2 = 3 (i.e., three threshold values for the second constraint),
𝑞1,1 = 1, 𝑞1,2 = 5, and 𝑞2,1 = 100, 𝑞2,2 = 105, and 𝑞2,3 = 110. Moreover, we consider the following 𝑑 = 6 ordered
threshold vectors

q(1) =
[

1
100

]
, q(2) =

[
1

105

]
, q(3) =

[
1

110

]
, q(4) =

[
5

100

]
, q(5) =

[
5

105

]
, and q(6) =

[
5

110

]
.

Note that 𝑞 (1)
1 = 𝑞

(2)
1 = 𝑞

(3)
1 = 1, 𝑞 (4)

1 = 𝑞
(5)
1 = 𝑞

(6)
1 = 5, while 𝑞

(1)
2 = 𝑞

(4)
2 = 100, 𝑞 (2)

2 = 𝑞
(5)
2 = 105, and

𝑞
(3)
2 = 𝑞

(6)
2 = 110. The threshold index vectors are

𝑰 (1) =

[
1
1

]
, 𝑰 (2) =

[
1
2

]
, 𝑰 (3) =

[
1
3

]
, 𝑰 (4) =

[
2
1

]
, 𝑰 (5) =

[
2
2

]
, and 𝑰 (6) =

[
2
3

]
.

Hence 𝐼 (1)1 = 𝐼
(2)
1 = 𝐼

(3)
1 = 1, 𝐼 (4)1 = 𝐼

(5)
1 = 𝐼

(6)
1 = 2, while 𝐼 (1)2 = 𝐼

(4)
2 = 1, 𝐼 (2)2 = 𝐼

(5)
2 = 2, and 𝐼

(3)
2 = 𝐼

(6)
2 = 3.

For 𝜃 ≤ 𝑑, we use 𝐴𝜃 to denote the region that is feasible under threshold vector q(𝜃 ) but not under threshold
vectors q(1) , . . . , q(𝜃−1) (if 𝜃 > 1), and use 𝐴𝑑+1 to denote the region that is infeasible to all q(1) , . . . , q(𝑑) . More
specifically, we let

𝐴𝜃 =


{
(𝑧1, 𝑧2, . . . , 𝑧𝑠 ) : 𝑧ℓ ≤ 𝑞

(𝜃 )
ℓ

, ℓ = 1, 2, . . . , 𝑠
}
, if 𝜃 = 1;{

(𝑧1, 𝑧2, . . . , 𝑧𝑠 ) : 𝑧ℓ ≤ 𝑞
(𝜃 )
ℓ

, ℓ = 1, 2, . . . , 𝑠
}
\ ∪𝜃−1

𝜅=1𝐴𝜅 , if 𝜃 = 2, . . . , 𝑑 ;

R𝑠 \ ∪𝑑
𝜅=1𝐴𝜅 , if 𝜃 = 𝑑 + 1.

(1)

With this definition of 𝐴𝜃 , we can say that the decision maker wants to find the best among systems whose constraint
mean configurations fall in 𝐴1 but would consider systems in 𝐴2 if no systems fall in 𝐴1. She would further consider
systems in 𝐴3 if no systems fall in 𝐴1 and 𝐴2 and 𝑑 ≥ 3, etc.

We assume that the ordered list of threshold vectors is such that when there is no trade-off, the decision maker
always prefers “tighter” combinations of threshold values. Consider a case where there are two (non-negative)
constraints, the first constraint has three thresholds, and the second constraint has two thresholds. Then it is not
possible for the decision maker to prefer (𝑞1,3, 𝑞2,1) to (𝑞1,2, 𝑞2,1) in the preference order. Figure 1 shows 𝐴1, . . . , 𝐴5
for an example with 𝑑 = 4 combinations of threshold vectors. We see that q(1) = (𝑞1,2, 𝑞2,1) does not correspond to
the “tightest” combination of threshold values (i.e., (𝑞1,1, 𝑞2,1)), and similarly q(𝑑) = (𝑞1,3, 𝑞2,1) does not correspond
to the “weakest” combination of threshold values (i.e., (𝑞1,3, 𝑞2,2)).

The following definition will facilitate the efficient implementation of our approaches.

Definition 2.1. Constraint ℓ has an increasing preference if 𝑞 (𝜃 )
ℓ

≤ 𝑞
(𝜃 ′)
ℓ

for any 𝜃, 𝜃 ′ = 1, 2, . . . , 𝑑 with 𝜃 < 𝜃 ′.

We consider the following two examples to further explain Definition 2.1. Figure 2 shows three preference orders
of threshold vectors for two (non-negative) constraints with 𝑑1 = 𝑑2 = 3. Based on our definition of threshold
vectors, Figure 2(a) formulates the threshold vectors as q(1) = (𝑞1,1, 𝑞2,1), q(2) = (𝑞1,1, 𝑞2,2), q(3) = (𝑞1,1, 𝑞2,3), q(4) =
(𝑞1,2, 𝑞2,1), etc. We see that constraint 1 has increasing preference whereas constraint 2 does not. On the other hand,
we have 𝑑 = 3, q(1) = (𝑞1,1, 𝑞2,1), q(2) = (𝑞1,2, 𝑞2,2), and q(3) = (𝑞1,3, 𝑞2,3) in Figure 2(b), which satisfies Definition
2.1 for both constraints. Finally, in Figures 2(c) and 1, neither constraint has increasing preference.

2.2 Correct Selection
To solve the constrained R&S problem with subjective constraints described in Section 2.1, we consider two phases,
namely Phase I to identify feasible systems and Phase II to select a system with the largest 𝑥𝑖 based on a comparison
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𝑦𝑖2

𝑦𝑖1

𝑞2,1

𝑞2,2

𝑞1,1 𝑞1,2 𝑞1,3

𝐴1

𝐴2 𝐴3

𝐴4

𝐴5

Fig. 1. A preference order where the “tightest” (“weakest”) combination of thresholds is not “most” (“least”) preferred
threshold vector.

𝑦𝑖2

𝑦𝑖1

𝑞2,1

𝑞2,2

𝑞2,3

𝑞1,1 𝑞1,2 𝑞1,3

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6

𝐴7

𝐴8

𝐴9

𝐴10

(a)

𝑦𝑖2

𝑦𝑖1

𝑞2,1

𝑞2,2

𝑞2,3

𝑞1,1 𝑞1,2 𝑞1,3

𝐴1

𝐴2

𝐴3

𝐴4

(b)

𝑦𝑖2

𝑦𝑖1

𝑞2,1

𝑞2,2

𝑞2,3

𝑞1,1 𝑞1,2 𝑞1,3

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6

𝐴7

𝐴8

𝐴9

𝐴10

(c)

Fig. 2. Three preference orders.

among feasible systems. These phases are designed to correctly select the best feasible system with respect to the
most preferred threshold vector possible, as described in this section.

For stochastic constraints, it is not always possible to guarantee a correct feasibility determination with respect
to the stochastic constraints. Instead, [1] introduces a tolerance level, namely 𝜖ℓ > 0, for constraint ℓ , which is a
positive real value predefined by the decision maker. This is often interpreted as the amount the decision maker is
willing to be off from a given threshold value. Consider a threshold value 𝑞ℓ,𝑚 for 𝑚 = 1, 2, . . . , 𝑑ℓ . Any systems
with 𝑦𝑖ℓ ≤ 𝑞ℓ,𝑚 − 𝜖ℓ are considered as desirable systems with respect to constraint ℓ and threshold value 𝑞ℓ,𝑚 . We let
𝐷ℓ (𝑞ℓ,𝑚) denote the set of desirable systems for constraint ℓ and 𝑞ℓ,𝑚 . Systems with 𝑦𝑖ℓ ≥ 𝑞ℓ,𝑚 + 𝜖ℓ are considered
as unacceptable systems for constraint ℓ and threshold 𝑞ℓ,𝑚 , and are placed in set 𝑈ℓ (𝑞ℓ,𝑚). Systems that fall within
a tolerance level of 𝑞ℓ,𝑚 , which means 𝑞ℓ,𝑚 − 𝜖ℓ < 𝑦𝑖ℓ < 𝑞ℓ,𝑚 + 𝜖ℓ , are considered as acceptable systems, placing
them in the set 𝐴ℓ (𝑞ℓ,𝑚). More specifically,

𝐷ℓ (𝑞ℓ,𝑚) = {𝑖 ∈ Γ | 𝑦𝑖ℓ ≤ 𝑞ℓ,𝑚 − 𝜖ℓ };
𝑈ℓ (𝑞ℓ,𝑚) = {𝑖 ∈ Γ | 𝑦𝑖ℓ ≥ 𝑞ℓ,𝑚 + 𝜖ℓ }; and

𝐴ℓ (𝑞ℓ,𝑚) = {𝑖 ∈ Γ | 𝑞ℓ,𝑚 − 𝜖ℓ < 𝑦𝑖ℓ < 𝑞ℓ,𝑚 + 𝜖ℓ }.

REMARK 1. As discussed in [1], a feasible (infeasible) system 𝑖 with 𝑦𝑖ℓ ∈ (𝑞ℓ,𝑚−𝜖ℓ , 𝑞ℓ,𝑚) (𝑦𝑖ℓ ∈ (𝑞ℓ,𝑚, 𝑞ℓ,𝑚 +𝜖ℓ ))
that falls in the acceptable set with respect to constraint ℓ may be declared infeasible (feasible). This leads to
potential errors in feasibility decisions, which are analogous to Type I and II errors of a hypothesis test. Therefore,
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𝑞ℓ,𝑚 and 𝜖ℓ should be chosen based on which error the decision maker views more important. For example, for the
cost constraint of the inventory example in Section 1, if the decision maker wants to select systems whose expected
cost is below 105 but eliminate all systems whose expected cost is above 110, she can set 𝑞ℓ,𝑚 − 𝜖ℓ = 105 and
𝑞ℓ,𝑚 + 𝜖ℓ = 110, which is equivalent of setting 𝑞ℓ,𝑚 = 107.5 and 𝜖ℓ = 2.5.

When feasibility check is performed to completion (until a decision is made), we let CD𝑖ℓ (𝑞ℓ,𝑚) denote the
correct decision event of system 𝑖 with respect to constraint ℓ and threshold 𝑞ℓ,𝑚 , which is defined as declaring
system 𝑖 as feasible if 𝑖 ∈ 𝐷ℓ (𝑞ℓ,𝑚) and as infeasible if 𝑖 ∈ 𝑈ℓ (𝑞ℓ,𝑚). Any feasibility decision is considered correct if
𝑖 ∈ 𝐴ℓ (𝑞ℓ,𝑚). For any threshold vector q(𝜃 ) , we say that system 𝑖 is desirable with respect to q(𝜃 ) when it is desirable
with respect to all the constraints, i.e., 𝑖 ∈ 𝐷ℓ (𝑞 (𝜃 )

ℓ
) for all ℓ = 1, . . . , 𝑠. System 𝑖 is unacceptable with respect q(𝜃 ) if

it is unacceptable with respect to at least one constraint, i.e., there exists ℓ such that 𝑖 ∈ 𝑈ℓ (𝑞 (𝜃 )
ℓ

). When system 𝑖 is
acceptable to some (or all) the constraints and desirable with respect to the other constraints, system 𝑖 is called
acceptable with respect to q(𝜃 ) .

To select the best system with respect to the primary performance measure in Phase II, the decision maker needs
to choose an indifference-zone parameter 𝛿 , which is the smallest absolute difference that the decision maker
considers significant. More specifically, any system whose primary performance measure is at least 𝛿 smaller
(larger) than system 𝑖 is considered as inferior (superior) to system 𝑖.

Let 𝜃 ∗ be the smallest 𝜃 such that 𝐷ℓ (𝑞 (𝜃 )
ℓ

) ≠ ∅ for all ℓ . If for each 𝜃 = 1, . . . , 𝑑, there exists at least one
constraint ℓ𝜃 such that 𝐷ℓ𝜃 (𝑞

(𝜃 )
ℓ𝜃

) = ∅, i.e., 𝜃 ∗ does not exist, then we set 𝜃 ∗ = 𝑑 + 1. If 𝜃 ∗ ≤ 𝑑 , then q(𝜃
∗) is the most

preferable threshold vector possible where at least one desirable system exists. Further, let 𝐵 denote the set of
desirable systems with respect to q(𝜃

∗) (i.e., 𝐵 = ∩𝑠
ℓ=1𝐷ℓ (𝑞 (𝜃 ∗)

ℓ
) and let [𝑏] be the index of the best system among

the systems in 𝐵, so that 𝑥 [𝑏 ] ≥ 𝑥𝑖 for 𝑖, [𝑏] ∈ 𝐵. Then if 𝜃 ∗ ≤ 𝑑 , the correct selection event is to select a desirable
or acceptable system with respect to q(𝜃

∗) whose primary performance is not inferior to the best system, or an
acceptable system with respect to a preferred threshold vector. More specifically,

CS =

{
select 𝑖 such that either 𝑖 ∈ ∩𝑠

ℓ=1

(
𝐷ℓ

(
𝑞
(𝜃 ∗)
ℓ

)
∪𝐴ℓ

(
𝑞
(𝜃 ∗)
ℓ

))
and 𝑥𝑖 > 𝑥 [𝑏 ] − 𝛿

or 𝑖 ∈ ∪𝜃<𝜃 ∗ ∩𝑠
ℓ=1

(
𝐷ℓ

(
𝑞
(𝜃 )
ℓ

)
∪𝐴ℓ

(
𝑞
(𝜃 )
ℓ

)) }
.

If 𝜃 ∗ = 𝑑 + 1, CS is to either declare that no feasible systems exist or identify any acceptable system with respect to
any of the threshold vectors q(1) , . . . , q(𝑑) .

REMARK 2. If 𝜖ℓ is small enough that no acceptable systems exist, then a CS event corresponds to the selection
of either system [𝑏] or an acceptable system 𝑖 with respect to q(𝜃

∗) where 𝑥𝑖 > 𝑥 [𝑏 ] − 𝛿 . However, if there are
acceptable systems with respect to q(𝜃 ) for 𝜃 < 𝜃 ∗, then they may be declared feasible to q(𝜃 ) . In this case, systems
infeasible to q(𝜃 ) are eliminated including system [𝑏], and a CS event happens when selecting an acceptable system
𝑖 (probably with the best primary performance measure but no guarantee whether 𝑥𝑖 > 𝑥 [𝑏 ] − 𝛿) from among those
declared feasible with respect to q(𝜃 ) .

To better illustrate the CS event, we consider a problem with two constraints where the first constraint has
two thresholds and the second constraint has three thresholds. We consider all 𝑑 = 6 possible threshold vectors
q(1) , . . . , q(6) . Figure 3 presents possible (non-negative) secondary performance means and thresholds where the
shaded areas represent acceptable regions with respect to one or more threshold vectors, and 𝐴1, . . . , 𝐴6 are defined
as in Equation (1) and are separated by the solid lines. Assuming that there are four systems 𝑎, 𝑏, 𝑐, and 𝑑 , we see
that (i) 𝜃 ∗ = 5; (ii) 𝑎, 𝑏 ∈ ∪𝜃<𝜃 ∗ ∩𝑠

ℓ=1 (𝐷ℓ (𝑞 (𝜃 )
ℓ

) ∪ 𝐴ℓ (𝑞 (𝜃 )
ℓ

)); and (iii) 𝑎, 𝑐, 𝑑 ∈ ∩𝑠
ℓ=1 (𝐷ℓ (𝑞 (5)

ℓ
) ∪ 𝐴ℓ (𝑞 (5)

ℓ
)). Then a

CS event is to select system 𝑖 ∈ {𝑎, 𝑐, 𝑑} such that 𝑥𝑖 > 𝑥 [𝑏 ] − 𝛿 . Another possible CS event is to select 𝑎 when 𝑎 is
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declared feasible to q(1) because systems {𝑏, 𝑐, 𝑑} are infeasible to q(1) . Similarly, if 𝑎 is declared infeasible to q(1)

and q(3) but 𝑏 is declared feasible to q(3) , then the selection of 𝑏 is a CS event. Finally, if 𝑎 is declared infeasible to
q(1) but both 𝑎 and 𝑏 are declared feasible to q(3) , then {𝑐, 𝑑} are eliminated and the selection of 𝑎 or 𝑏 (with a
better primary performance measure) becomes a CS event.

𝑦𝑖2

𝑦𝑖1

𝑞2,1

𝑞2,2

𝑞2,3

𝑞1,1 𝑞1,2

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6

𝑎

𝑏

𝑐

𝑑

Fig. 3. Regions for two secondary performance measures and six threshold vectors.

2.3 Notation and Assumptions
Throughout the paper, we let 1(·) be the indicator function and |𝑆 | be the cardinality of set 𝑆 , and use the additional
notation defined below:

𝑛0 ≡ initial sample size for each system (𝑛0 ≥ 2);
𝑟𝑖 ≡ number of observations so far for system 𝑖 (𝑟𝑖 ≥ 𝑛0);

𝑋𝑖 (𝑟𝑖 ) ≡ average value of 𝑋𝑖1, . . . , 𝑋𝑖𝑟𝑖 for system 𝑖;
𝑌𝑖ℓ (𝑟𝑖 ) ≡ average value of 𝑌𝑖ℓ1, . . . , 𝑌𝑖ℓ𝑟𝑖 for system 𝑖 and constraint ℓ ;

𝑆2
𝑋𝑖 𝑗

(𝑛0) ≡ sample variance of 𝑋𝑖1 − 𝑋 𝑗1, . . . , 𝑋𝑖𝑛0 − 𝑋 𝑗𝑛0 between system 𝑖 and 𝑗 ;

𝑆2
𝑌𝑖ℓ

(𝑛0) ≡ sample variance of 𝑌𝑖ℓ1, . . . , 𝑌𝑖ℓ𝑛0 for system 𝑖 and constraint ℓ ;

𝑅(𝑟𝑖 ; 𝑣,𝑤, 𝑧) ≡ max
{
0,

(𝑛0 − 1)𝑤𝑧

𝑣
− 𝑣

2𝑐
𝑟𝑖

}
for 𝑣,𝑤, 𝑧 ∈ R+ and 𝑐 ∈ {1, 2, . . .};

𝑔(𝜂) ≡
𝑐∑︁
𝑗=1

(−1) 𝑗+1
(
1 − 1

2
1( 𝑗 = 𝑐)

)
×
(
1 + 2𝜂 (2𝑐 − 𝑗) 𝑗

𝑐

)−(𝑛0−1)/2
;

𝛼 ≡ overall nominal error for a procedure under consideration, where 0 < 𝛼 < 1.

Note that an integer parameter 𝑐 is required for both 𝑅(𝑟𝑖 ; 𝑣,𝑤, 𝑧) and 𝑔(𝜂). This is a user-defined parameter that
impacts the shape of the continuation region defined by (−𝑅(𝑟𝑖 ; 𝑣,𝑤, 𝑧), 𝑅(𝑟𝑖 ; 𝑣,𝑤, 𝑧)) (it becomes a longer triangle
as 𝑐 increases). The choice 𝑐 = 1 is recommended as it guarantees a unique and easy solution when computing the
implementation parameter 𝜂 from 𝑔(𝜂). [12] shows the derivation of 𝑅(𝑟𝑖 ; 𝑣,𝑤, 𝑧) and also suggests that 𝑐 = 1 is
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8 • Zhou et al.

a good choice when the decision maker does not have information about the systems’ mean configuration. The
experimental results in the paper are based on 𝑐 = 1.

Our statistical analysis of our proposed procedures will rely on the following two assumptions.

ASSUMPTION 1. For each system 𝑖, where 𝑖 = 1, . . . , 𝑘 , we have
𝑋𝑖𝑛

𝑌𝑖1𝑛
...

𝑌𝑖𝑠𝑛


𝑖𝑖𝑑∼ 𝑁𝑠+1

©­­­­«

𝑥𝑖
𝑦𝑖1
...

𝑦𝑖𝑠


, Σ𝑖

ª®®®®¬
, 𝑛 = 1, 2, . . .

where 𝑖𝑖𝑑∼ denotes independent and identically distributed, 𝑁𝑠+1 denotes (𝑠 + 1)-dimensional multivariate normal,
and Σ𝑖 is the (𝑠 + 1) × (𝑠 + 1) positive definite covariance matrix of the vector (𝑋𝑖𝑛, 𝑌𝑖1𝑛, . . . , 𝑌𝑖𝑠𝑛). Furthermore, for
the primary performance measure, we have

𝑋1𝑛
...

𝑋𝑘𝑛


𝑖𝑖𝑑∼ 𝑁𝑘

©­­«

𝑥1
...

𝑥𝑘

 , Σ
′ª®®¬ ,

where Σ′ is the 𝑘 × 𝑘 positive definite covariance matrix of the vector (𝑋1𝑛, . . . , 𝑋𝑘𝑛).

Normally distributed data is a common assumption used in many R&S procedures due to the fact that it can be
justified by the Central Limit Theorem when observations are either within-replication averages or batch means
([15]). Moreover, primary and secondary performance measures are usually correlated. When common random
numbers (CRN) are introduced in simulating observations from each system, observations between systems are
correlated. Our formulation allows correlations between both performance measures and systems. Note that 𝑌𝑖ℓ𝑛
and 𝑌𝑗ℓ𝑛 can be correlated for 𝑖 ≠ 𝑗 if CRNs are used. However, as feasibility determination involves comparisons
between 𝑌𝑖ℓ𝑛 and thresholds rather than 𝑌𝑗 ℓ𝑛, we do not require any assumptions about their covariance structure
across systems.

ASSUMPTION 2. If 𝜃 ∗ ≤ 𝑑, then for any system 𝑖 ∈ ∩𝑠
ℓ=1

(
𝐷ℓ (𝑞 (𝜃 ∗)

ℓ
) ∪𝐴ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
, where 𝑖 ≠ [𝑏], we assume

𝑥𝑖 ≤ 𝑥 [𝑏 ] − 𝛿 .

Assumption 2 implies that there exists only one best system [𝑏] and any systems that are desirable or acceptable
with respect to 𝑞

(𝜃 ∗)
ℓ

for all constraint ℓ = 1, . . . , 𝑠 are inferior to system [𝑏]. In reality, one can choose a reasonably
small 𝛿 to satisfy Assumption 2. This assumption is a standard assumption for proving the statistical validity of IZ
approaches in the R&S literature.

3 SEQUENTIALLY-RUNNING PROCEDURES
In this section, we present two procedures, namely ZAKR and ZAK , that implement Phases I and II sequentially.

[1] and [8] also propose sequentially-running procedures to select the best system in the presence of multiple
constraints. Our sequentially-running procedures use similar steps in Phase II as [1] and [8], but the steps for
Phase I are different because [1] and [8] consider one fixed set of thresholds while we consider multiple thresholds.
Our approach for handling multiple threshold values builds on the work of [22] who developed RF , an efficient
fully-sequential procedure for checking the feasibility of all systems with respect to all constraints and all thresholds
simultaneously. [22] show that once a system 𝑖 is declared feasible with respect to a threshold 𝑞ℓ,𝑚 such that
𝑞ℓ,𝑚 ≥ 𝑦𝑖ℓ + 𝜖ℓ , this system will be declared feasible with respect to all thresholds 𝑞ℓ,𝑚+1, . . . , 𝑞ℓ,𝑑ℓ on constraint ℓ .
Similarly, if a system 𝑖 is declared infeasible with respect to a threshold 𝑞ℓ,𝑚 such that 𝑞ℓ,𝑚 ≤ 𝑦𝑖ℓ − 𝜖ℓ , then this
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system will be declared infeasible with respect to all the thresholds 𝑞ℓ,1, . . . , 𝑞ℓ,𝑚−1. This fact is essential in our
proposed procedures.

The ZAKR (“restart") procedure is statistically valid, while the ZAK procedure is heuristic. The two pro-
cedures are similar in the sense that both start by executing Phase I for all systems to identify the most preferred
threshold vector possible, q(𝜃

∗) , as well as the feasible systems with respect to q(𝜃
∗) . The parameter 𝜃 keeps track

of our current estimate of 𝜃 ∗ (initially 𝜃 = 𝑑), 𝑀 is a set of systems that are in consideration (initially 𝑀 contains
all the systems, i.e., 𝑀 = Γ), and 𝐹 is a set of systems that are declared feasible with respect to threshold vector
q(𝜃 ) (initially 𝐹 = ∅). The procedures return 𝑍𝑖,ℓ,𝑚 = 1 (𝑍𝑖,ℓ,𝑚 = 0) if system 𝑖 is declared feasible (infeasible) with
respect to constraint ℓ and threshold 𝑞𝑚ℓ , and 𝑍𝑖,ℓ,𝑚 = 2 if no decision is made about the feasibility of system 𝑖 with
respect to threshold 𝑞ℓ,𝑚 on constraint ℓ . Notice that once a system is declared feasible with respect to threshold
vector q(𝜃 ) where 1 ≤ 𝜃 ≤ 𝑑 − 1, we do not need to check feasibility for any systems with respect to the less
preferred threshold vectors q(𝜃+1) , . . . , q(𝑑) .

The sequentially-running procedures, ZAKR and ZAK, perform Phase II on the surviving systems from
the completion of Phase I. More specifically, it selects the best system with respect to the primary performance
measure among the subset of systems that are declared feasible with respect to the most preferred threshold vector
possible identified in Phase I. The main difference between them lies in whether they collect observations on the
primary performance measure during Phase I and recycle them in Phase II. In order to prove the statistical validity
of ZAKR and avoid storing simulation results, the procedure avoids the correlation between the primary and
secondary performance measures by not recycling any observations from Phase I and instead restarting “from
scratch” when implementing comparisons in Phase II. Moreover, when CRN are used to compare systems in Phase
II, we assume that the implementation of CRN is such that the simulation results for any surviving system in Phase
II do not depend on the set of surviving systems 𝐹 (e.g., the simulation results for any surviving system 𝑖 would be
the same as if 𝐹 = Γ). ZAKR is described in Algorithm A.1 along with its statistical validity in Appendix A. A
discussion about how to set the implementation parameters for ZAKR is given in Appendix B.1.

As ZAKR starts “from scratch” when performing the comparison, it discards all the information related to the
primary performance measure obtained in Phase I, which can be quite inefficient in terms of the computation effort.
One may consider collecting and storing all the observations of the primary performance measure in Phase I and
then extracting information related to the primary performance measure when performing Phase II. However, as
Phase I may require a lot of observations, this approach requires significant memory for storing the observations
from Phase I. [19] proposes the Sequential Selection with Memory procedure (SSM) that is specifically for use
within an optimization-via-simulation algorithm when simulation is costly, and partial or complete information on
solutions previously visited is maintained. When data storage is prohibitive, the procedure requires only summary
statistics of the simulation output, which solves the memory space issue discussed above. We then present a
sequentially-running procedure, namely ZAK, that adopts the SSM procedure as its Phase II. The detailed
description is shown in Algorithm 1.

Similar to the discussion in [1], there are two difficulties in proving the statistical validity of ZAK. First, as
𝑟𝑖 , the number of observations 𝑋𝑖𝑛 collected in Phase I, depends on 𝑌𝑖ℓ𝑛 for system 𝑖, this dependency affects the
comparison in Phase II. This dependency issue can be resolved by performing ZAKR instead as it restarts “from
scratch" for the surviving systems of Phase I. Second, we use 𝑔(𝜂𝑐 ) = 𝛼𝑐/(|𝐹 | − 1) instead of 𝑔(𝜂𝑐 ) = 𝛼𝑐/(𝑘 − 1) to
compute the implementation parameter 𝜂𝑐 for Phase II. Thus we only allocate the nominal error for Phase II to the
comparison between the best system [𝑏] and the surviving systems from Phase I, rather than all 𝑘 − 1 other systems.
As the comparison between [𝑏] and the other surviving systems is done with a larger nominal error, the resulting 𝜂𝑐
is smaller, which helps improve the efficiency of our approach. However, the continuation region in Phase II now
depends on the number of surviving systems from Phase I. We address the dependency between Phases I and II in
ZAK by choosing the nominal errors 𝛼 𝑓 and 𝛼𝑐 for Phases I and II as 𝛼 𝑓 + 𝛼𝑐 = 𝛼 to incorporate the correlation
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10 • Zhou et al.

Algorithm 1 Procedure ZAK
[Setup:] Select the overall nominal confidence level 1 − 𝛼 and choose 0 < 𝛼𝑓 , 𝛼𝑐 < 1 such that 𝛼𝑓 + 𝛼𝑐 = 𝛼 . Choose tolerance levels
𝜖1, . . . , 𝜖𝑠 , indifference-zone parameter 𝛿 , threshold vectors {q(1) , q(2) , . . . , q(𝑑 ) }, and associated index vectors {𝑰 (1) , 𝑰 (2) , . . . , 𝑰 (𝑑 ) }. Set
𝑀 = Γ and 𝑍𝑖,ℓ,𝑚 = 2 for all 𝑖 ∈ 𝑀, ℓ = 1, . . . , 𝑠, and𝑚 = 1, . . . , 𝑑ℓ . Set 𝐹 = ∅ and 𝜃 = 𝑑 . Set 𝜂𝑓 such that 𝑔 (𝜂𝑓 ) = 𝛼′

𝑓
, where 0 < 𝛼′

𝑓
< 1/𝑠

is set as a solution to (
1 − min{𝑠,𝑑 }𝛼′

𝑓

)𝑘−1
× (1 − 𝑠𝛼′

𝑓
) = 1 − 𝛼𝑓 , if systems are simulated independently;

and set as
𝛼′
𝑓
= 𝛼𝑓 /[ (𝑘 − 1) min{𝑠,𝑑 } + 𝑠 ] , if systems are simulated under CRN.

Add any constraint ℓ , where ℓ = 1, . . . , 𝑠, with increasing preference to set IP.
[Initialization for Phase I:]
for each system 𝑖 ∈ 𝑀 do
• Obtain 𝑛0 observations 𝑌𝑖ℓ1, 𝑌𝑖ℓ2, . . . , 𝑌𝑖ℓ𝑛0 for ℓ = 1, 2, . . . , 𝑠. Also, obtain 𝑛0 observations 𝑋𝑖𝑛, 𝑛 = 1, . . . , 𝑛0.
• Compute 𝑌𝑖ℓ (𝑛0) and 𝑆2

𝑌𝑖ℓ
(𝑛0) .

• Compute 𝑋𝑖 (𝑛0) and 𝑆2
𝑋𝑖 𝑗

(𝑛0) for all systems 𝑗 ≠ 𝑖

• Set 𝑟𝑖 = 𝑛0,ON𝑖 = {1, 2, . . . , 𝑠 }, and ON𝑖ℓ = {1, . . . , 𝑑ℓ } for ℓ = 1, 2, . . . , 𝑠.
end for
[Feasibility Check:]
for each system 𝑖 ∈ 𝑀 do

for ℓ ∈ ON𝑖 do
for𝑚 ∈ ON𝑖ℓ do,

If 𝑌𝑖ℓ (𝑟𝑖 ) + 𝑅 (𝑟𝑖 ;𝜖ℓ , 𝜂𝑓 , 𝑆
2
𝑌𝑖ℓ

(𝑛0))/𝑟𝑖 ≤ 𝑞ℓ,𝑚 , set 𝑍𝑖,ℓ,𝑚 = 1 and ON𝑖ℓ = ON𝑖ℓ \ {𝑚}.
If 𝑌𝑖ℓ (𝑟𝑖 ) − 𝑅 (𝑟𝑖 ;𝜖ℓ , 𝜂𝑓 , 𝑆

2
𝑌𝑖ℓ

(𝑛0))/𝑟𝑖 ≥ 𝑞ℓ,𝑚 , set 𝑍𝑖,ℓ,𝑚 = 0 and ON𝑖ℓ = ON𝑖ℓ \ {𝑚}.
end for
If ON𝑖ℓ = ∅, set ON𝑖 = ON𝑖 \ {ℓ }.

end for
If ∃ minimum 𝜅 ≤ 𝜃 s.t.

∏𝑠
ℓ=1 𝑍𝑖,ℓ,𝐼

(𝜅 )
ℓ

= 1, and either 𝜅 < 𝜃 or 𝑖 ∉ 𝐹 , then

• If 𝜅 < 𝜃 , then set 𝐹 = ∅, 𝜃 = 𝜅, and for all 𝑗 ∈ 𝑀 delete 𝑞ℓ,𝑚 from ON𝑗ℓ if ℓ ∈ IP and 𝑚 > 𝐼
(𝜃 )
ℓ (if ℓ ∉ IP, then 𝑞ℓ,𝑚 can be removed

from ON𝑗ℓ if 𝐼 (𝜃
′)

ℓ ≠𝑚 for all 𝜃 ′ ≤ 𝜅), and set ON𝑗 = ON𝑗 \ {ℓ } if ON𝑗ℓ = ∅.
• Add system 𝑖 to 𝐹 .

If
∏𝑠

ℓ=1 𝑍𝑖,ℓ,𝐼
(𝜃 )
ℓ

= 0 or 1 and either 𝜃 = 1 or
∏𝑠

ℓ=1 𝑍𝑖,ℓ,𝐼
(𝜅 )
ℓ

= 0 for all 𝜅 = 1, . . . , 𝜃 − 1, then remove system 𝑖 from 𝑀 .

end for
[Stopping Condition for Phase I]:
If 𝑀 ≠ ∅, then for each system 𝑖 ∈ 𝑀 , set 𝑟𝑖 = 𝑟𝑖 + 1, take one additional observation 𝑌𝑖ℓ𝑟𝑖 and 𝑋𝑖,𝑟𝑖+1, and update 𝑌𝑖ℓ (𝑟𝑖 ) and 𝑋𝑖 (𝑟𝑖 ) for
ℓ ∈ ON𝑖 , then go to [Feasibility Check]. Else, check the following conditions.
• If |𝐹 | = 0, stop and conclude no feasible systems;
• If |𝐹 | = 1, stop and return the system in 𝐹 as the best; or
• If |𝐹 | > 1, go to [Initialization for Phase II].
[Initialization for Phase II:] Let 𝜂𝑐 be a solution to 𝑔 (𝜂𝑐 ) = 𝛼′

𝑐 , where

𝛼′
𝑐 =

{
1 − (1 − 𝛼𝑐 )1/( |𝐹 |−1) , if systems are simulated independently;
𝛼𝑐/( |𝐹 | − 1), if systems are simulated under CRN.

Let 𝑀 = 𝐹 be the set of systems still in contention. Set 𝑟 = min𝑖∈𝐹 𝑟𝑖 and go to [Comparison].
[Comparison:] For 𝑖, 𝑗 ∈ 𝑀 s.t. 𝑖 ≠ 𝑗 and

𝑟𝑋𝑖 (𝑟𝑖 ) > 𝑟𝑋 𝑗 (𝑟 𝑗 ) + 𝑅 (𝑟 ;𝛿, 𝜂𝑐 , 𝑆2
𝑋𝑖 𝑗

(𝑛0)),

eliminate 𝑗 from 𝑀 .
[Stopping Condition for Phase II:] If |𝑀 | = 1, then stop and return the system in 𝑀 as the best. Otherwise, for each system 𝑖 ∈ 𝑀 with
𝑟𝑖 ≤ 𝑟 , take one additional observation 𝑋𝑖,𝑟𝑖+1, set 𝑟𝑖 = 𝑟𝑖 + 1 and compute 𝑋𝑖 (𝑟𝑖 ) . Then, set 𝑟 = 𝑟 + 1 and go to [Comparison].
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between the two phases. While (1− 𝛼 𝑓 ) (1− 𝛼𝑐 ) is always larger than 1− (𝛼 𝑓 + 𝛼𝑐 ), the difference is typically quite
small. Although we have not proved the statistical validity of ZAK , our experimental results (discussed in Section
6) do not show any violation of its validity.

The choices of 𝛼 𝑓 and 𝛼𝑐 affect the performance of ZAK . Similar to the discussion in Section B.1, the decision
maker may choose 𝑒1 = 𝛼 𝑓 /𝛼𝑐 if she has knowledge on the relative difficulty of Phases I and II. The value of 𝛼𝑐
can be found by solving 𝑒1 × 𝛼𝑐 + 𝛼𝑐 = 𝛼 , and the corresponding value of 𝛼 𝑓 can be found as 𝛼 𝑓 = 𝑒1 × 𝛼𝑐 . If the
decision maker does not have the information about the relative difficulty of Phases I and II, one possibility is
to choose 𝛼 𝑓 = 𝛼𝑐 = 𝛼/2. Similar to ZAKR , another possibility is to choose 𝑒2 = 𝑠𝛼 ′

𝑓
/𝛼 ′

𝑐 if 𝑠 ≤ 𝑑 or to choose
𝑒2 = 𝑑𝛼 ′

𝑓
/𝛼 ′

𝑐 if 𝑑 < 𝑠. Appendix B.2 provides a detailed discussion on how to set the implementation parameters
𝛼 ′
𝑓
, 𝛼 ′

𝑐 for Phase I.

4 SIMULTANEOUSLY-RUNNING PROCEDURE
In this section, we provide a procedure that implements Phases I and II simultaneously. This procedure aims to
solve the problem from a different perspective. Specifically, by implementing Phase I and II simultaneously, the
elimination of inferior and infeasible systems can happen simultaneously throughout the procedure. This procedure
increases the opportunity to eliminate systems whose feasibility are still unknown but are clearly inferior to a
certain system. As a result, the procedure is expected to be more efficient than the sequentially-running procedure.
Section 4.1 describes the simultaneously-running procedure and Section 4.2 proves its statistical validity.

4.1 Procedure ZAK+
In this section, we provide a procedure that runs Phases I and II simultaneously in Algorithm 2. Similar to the
sequentially-running procedures ZAKR and ZAK, we use the variable 𝜃 to keep track of the current most
preferred threshold vector for which we are trying to determine feasibility. Initially, 𝜃 is set to 𝑑 , which is the index
of the least preferred threshold vector. We use sets 𝑀 and 𝐹 defined as in Section 3 and additionally define set 𝑆𝑆𝑖
as a set of systems found to be superior to system 𝑖 in terms of the primary performance measure.

Rather than performing Phase II on the surviving systems from Phase I as ZAKR and ZAK do, we now
perform both feasibility check and pairwise comparison for all systems that are still in consideration (i.e., 𝑖 ∈ 𝑀)
within each iteration. More specifically, for each system 𝑖 ∈ 𝑀 , we check whether there exists a minimum threshold
vector that system 𝑖 is feasible with respect to, use 𝜃 to keep track of this threshold index, and update set 𝐹 if
appropriate. When a feasible decision is made for system 𝑖, we perform an additional step in Phase I: eliminate
system 𝑗 ∈ (𝑀 ∪ 𝐹 ) if 𝑖 ∈ 𝑆𝑆 𝑗 (system 𝑖 ∈ 𝐹 is shown to be superior compared with system 𝑗) and system 𝑗 is not
feasible with respect to any of q(1) , . . . , q(𝜃−1) . In Phase II, once a system 𝑖 is declared superior compared with
system 𝑗 in Phase II, we add system 𝑖 to 𝑆𝑆 𝑗 . Furthermore, if system 𝑖 ∈ (𝐹 ∩ 𝑆𝑆 𝑗 ) and system 𝑗 is infeasible with
respect to all q(1) , . . . , q(𝜃−1) , then we eliminate system 𝑗 from 𝑀 and 𝐹 .

Note that simultaneously-running procedures in [1] and [8] also use sets 𝑀 , 𝐹 , and 𝑆𝑆 𝑗 , and their [Comparison]
step is similar in the sense that pairwise comparison is performed among the systems whose superiority is not yet
determined. However, the procedures in [1] and [8] are designed for a fixed set of thresholds, and thus there is no
search for the most preferred threshold vector 𝜃 , and there is no resetting of set 𝐹 . By contrast, ZAK+ checks if a
more preferred threshold vector is found at each iteration. Whenever a more preferred threshold vector is found, the
index 𝜃 and 𝐹 are reset, and systems feasible to the updated threshold vector 𝜃 are added to the reset set 𝐹 .

A detailed description of the simultaneously-running procedure ZAK+ is shown in Algorithm 2.

4.2 Statistical Validity of the Simultaneously Running Procedure
In this section, we present the proof of the statistical validity of the simultaneously-running procedure ZAK+.
Before presenting the main results, we need more definitions. Let 𝜃 ∗ be defined as in Section 2.2. We define the
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Algorithm 2 ZAK+
[Setup:] Choose confidence level 1 − 𝛼 , tolerance levels 𝜖1, . . . 𝜖𝑠 , indifference-zone parameter 𝛿 , threshold vectors
{q(1) , q(2) , . . . , q(𝑑) }, and associated index vectors {𝑰 (1) , 𝑰 (2) , . . . , 𝑰 (𝑑) }. Set 𝑀 = Γ, 𝑆𝑆𝑖 = ∅, and 𝑍𝑖,ℓ,𝑚 = 2 for all
𝑖 ∈ 𝑀, ℓ = 1, . . . , 𝑠, and𝑚 = 1, . . . , 𝑑ℓ . Set 𝐹 = ∅ and 𝜃 = 𝑑 . Choose 0 < 𝛽𝑓 < 1/𝑠, 0 < 𝛽𝑐 < 1 that satisfy

min
0≤ 𝑗≤𝑘−1

{
(1 − min{𝑠, 𝑑}𝛽𝑓 ) 𝑗 ×

[
(1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 )𝑘−𝑗−1 − 𝑠𝛽𝑓

]}
= 1 − 𝛼 and 0 < 1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 < 1,

if systems are simulated independently;

min
0≤ 𝑗≤𝑘−1

{
1 − [ 𝑗 min{𝑠, 𝑑} + (𝑘 − 𝑗 − 1) min{𝑠, 𝑑 − 1} + 𝑠] 𝛽𝑓 − (𝑘 − 𝑗 − 1)𝛽𝑐

}
= 1 − 𝛼,

if systems are simulated under CRN.

Set 𝜂𝑓 and 𝜂𝑐 such that 𝑔(𝜂𝑓 ) = 𝛽𝑓 and 𝑔(𝜂𝑐 ) = 𝛽𝑐 . Add any constraint ℓ , where ℓ = 1, . . . , 𝑠, with increasing preference to
set IP.
[Initialization:]
for each system 𝑖 ∈ 𝑀 do
• Obtain 𝑛0 observations from system 𝑖.
• Compute 𝑋𝑖 (𝑛0), 𝑌𝑖ℓ (𝑛0), 𝑆2

𝑋𝑖 𝑗
(𝑛0), and 𝑆2

𝑌𝑖ℓ
(𝑛0) for all 𝑖, 𝑗 ∈ 𝑀 , where 𝑖 ≠ 𝑗 , and ℓ = 1, . . . , 𝑠.

• Set 𝑟 = 𝑛0,ON𝑖 = {1, . . . , 𝑠}, and ON𝑖ℓ = {1, . . . , 𝑑ℓ } for ℓ = 1, . . . , 𝑠.
end for
[Feasibility Check:]
for 𝑖 ∈ 𝑀 do

for ℓ ∈ ON𝑖 do
for𝑚 ∈ ON𝑖ℓ do

If 𝑌𝑖ℓ (𝑟 ) + 𝑅(𝑟 ; 𝜖ℓ , 𝜂𝑓 , 𝑆2
𝑌𝑖ℓ

(𝑛0))/𝑟 ≤ 𝑞ℓ,𝑚 , set 𝑍𝑖,ℓ,𝑚 = 1 and ON𝑖ℓ = ON𝑖ℓ \ {𝑚};
If 𝑌𝑖ℓ (𝑟 ) − 𝑅(𝑟 ; 𝜖ℓ , 𝜂𝑓 , 𝑆2

𝑌𝑖ℓ
(𝑛0))/𝑟 ≥ 𝑞ℓ,𝑚 , set 𝑍𝑖,ℓ,𝑚 = 0 and ON𝑖ℓ = ON𝑖ℓ \ {𝑚}.

end for
If ON𝑖ℓ = ∅, set ON𝑖 = ON𝑖 \ {ℓ}.

end for
If ∃ minimum 𝜅 ≤ 𝜃 s.t.

∏𝑠
ℓ=1 𝑍𝑖,ℓ,𝐼 (𝜅 )ℓ

= 1, and either 𝜅 < 𝜃 or 𝑖 ∉ 𝐹 , then

• If 𝜅 < 𝜃 , then set 𝐹 = ∅, 𝜃 = 𝜅, and for all 𝑗 ∈ 𝑀 delete 𝑞ℓ,𝑚 from ON𝑗ℓ if ℓ ∈ IP and𝑚 > 𝐼
(𝜃 )
ℓ

(if ℓ ∉ IP, then 𝑞ℓ,𝑚 can be

removed from ON𝑗ℓ if 𝐼 (𝜃
′)

ℓ
≠𝑚 for all 𝜃 ′ ≤ 𝜅), and set ON𝑗 = ON𝑗 \ {ℓ} if ON𝑗ℓ = ∅.

• Add system 𝑖 to 𝐹 .
• For all 𝑗 ∈ 𝑀 , if 𝑖 ∈ 𝑆𝑆 𝑗 and either 𝜃 = 1 or

∏𝑠
ℓ=1 𝑍 𝑗,ℓ,𝐼

(𝜅 )
ℓ

= 0 for all 𝜅 = 1, . . . , 𝜃 − 1, then remove system 𝑗 from 𝑀 and 𝐹

(if 𝑗 ∈ 𝐹 ) and delete 𝑆𝑆 𝑗 .
If either

∏𝑠
ℓ=1 𝑍𝑖,ℓ,𝐼 (𝜅 )ℓ

= 0 for all 1 ≤ 𝜅 ≤ 𝜃 , or 𝜃 > 1,
∏𝑠

ℓ=1 𝑍𝑖,ℓ,𝐼 (𝜅 )ℓ

= 0 for all 1 ≤ 𝜅 ≤ 𝜃 − 1, and there exists 𝑗 ∈ 𝐹 ∩𝑆𝑆𝑖 ,

then remove 𝑖 from 𝑀 and delete 𝑆𝑆𝑖 .
end for
[Comparison:] For 𝑖, 𝑗 ∈ 𝑀 s.t. 𝑖 ≠ 𝑗, 𝑖 ∉ 𝑆𝑆 𝑗 , 𝑗 ∉ 𝑆𝑆𝑖 , and

𝑟𝑋𝑖 (𝑟 ) > 𝑟𝑋 𝑗 (𝑟 ) + 𝑅(𝑟 ;𝛿, 𝜂𝑐 , 𝑆2
𝑋𝑖 𝑗

(𝑛0)),

add system 𝑖 to 𝑆𝑆 𝑗 . If 𝑖 ∈ 𝐹 , then remove system 𝑗 from 𝑀 and 𝐹 (if 𝑗 ∈ 𝐹 ) if either 𝜃 = 1 or
∏𝑠

ℓ=1 𝑍 𝑗,ℓ,𝐼
(𝜅 )
ℓ

= 0 for all

𝜅 = 1, . . . , 𝜃 − 1, and delete 𝑆𝑆 𝑗 .
[Stopping Condition:] If 𝑀 = 𝐹 and |𝐹 | = 1, then stop and return the system in 𝐹 as the best system. Else if 𝑀 = 𝐹 and
|𝐹 | = 0, then stop and return no feasible systems exist. Otherwise, for all 𝑖 ∈ 𝑀 , set 𝑟 = 𝑟 + 1, take one additional observation,
update 𝑋𝑖 (𝑟 ) and 𝑌𝑖ℓ (𝑟 ) for all ℓ ∈ ON𝑖 , and go to [Feasibility Check].
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sets 𝑆𝑎, 𝑆𝑢, 𝑆𝑎′ , and 𝑆𝑑 as follows:

𝑆𝑎 = set of acceptable systems with respect to at least one of the threshold vectors q(1) , . . . , q(𝜃
∗−1) ;

𝑆𝑢 =

{
set of unacceptable systems with respect to q(𝜃

∗) among systems in Γ \ 𝑆𝑎 , if 𝜃 ∗ ≤ 𝑑 ;
Γ \ 𝑆𝑎, if 𝜃 ∗ = 𝑑 + 1;

𝑆𝑎′ =

{
set of acceptable systems with respect to q(𝜃

∗) among systems in Γ \ 𝑆𝑎, if 𝜃 ∗ ≤ 𝑑 ;
∅, if 𝜃 ∗ = 𝑑 + 1;

𝑆𝑑 =

{
set of desirable systems with respect to q(𝜃

∗) among systems in Γ \ (𝑆𝑎 ∪ {[𝑏]}), if 𝜃 ∗ ≤ 𝑑 ;
∅, if 𝜃 ∗ = 𝑑 + 1.

We then let 𝑗𝑎 = |𝑆𝑎 |, 𝑗𝑎′ = |𝑆𝑎′ |, 𝑗𝑑 = |𝑆𝑑 |, and 𝑗𝑢 = |𝑆𝑢 |, and therefore 𝑗𝑎 + 𝑗𝑎′ + 𝑗𝑑 + 𝑗𝑢 + 1(𝜃 ∗ ≤ 𝑑) = 𝑘. For
correct selection, we must select a system in 𝑆𝑎 ∪ {[𝑏]} and eliminate the systems in 𝑆𝑎′ ∪ 𝑆𝑑 ∪ 𝑆𝑢 when 𝜃 ∗ ≤ 𝑑

(under Assumption 2); when 𝜃 ∗ = 𝑑 + 1, CS involves eliminating all systems in 𝑆𝑢 , and either declaring all systems
infeasible or selecting a system in 𝑆𝑎 .

To illustrate, recall the problem demonstrated in Figure 3, where 𝜃 ∗ = 5. Figure 3 shows systems 𝑎 and 𝑏 as two
examples of acceptable systems with respect to preferred threshold vectors (i.e., 𝑎, 𝑏 ∈ 𝑆𝑎). Note that system 𝑎 is
acceptable with respect to q(1) , q(2) , q(3) , and q(4) and desirable with respect to q(5) , while system 𝑏 is acceptable
with respect to q(3) but unacceptable to q(1) , q(2) , q(4) , and q(5) . System 𝑐 is acceptable with respect to q(5) (i.e.,
𝑐 ∈ 𝑆𝑎′) and unacceptable with respect to q(1) , . . . , q(4) .

We then introduce the following definitions for 𝑖 ∈ Γ and present two lemmas that are essential in proving the
statistical validity of ZAK+.

A∗
1 (𝑖) =

{
system 𝑖 is declared infeasible to q(1) , . . . , q(min{𝜃 ∗,𝑑 })

}
;

A∗
2 (𝑖) =

{
system 𝑖 is declared infeasible to q(1) , . . . , q(𝜃

∗−1) if 1 < 𝜃 ∗ ≤ 𝑑

}
;

B∗
1 =

{
system [𝑏] is declared feasible to q(𝜃

∗) if 𝜃 ∗ ≤ 𝑑

}
.

LEMMA 4.1. Under Assumption 1, for a particular system 𝑖, the [Feasibility Check] steps in ZAK+ ensure

Pr
(
A∗

1 (𝑖)
)
≥ 1 − min{𝑠, 𝑑}𝛽𝑓 , if 𝑖 ∈ 𝑆𝑢 ;

Pr
(
A∗

2 (𝑖)
)
≥ 1 − min{𝑠, 𝑑 − 1}𝛽𝑓 , if 𝑖 ∈ 𝑆𝑑 ∪ 𝑆𝑎′ and 1 < 𝜃 ∗ ≤ 𝑑 ;

Pr
(
B∗

1
)
≥ 1 − 𝑠𝛽𝑓 , if 𝜃 ∗ ≤ 𝑑.

LEMMA 4.2. Under Assumption 1, given 𝑖 such that 𝑥𝑖 ≤ 𝑥 [𝑏 ] − 𝛿 , the [Comparison] steps in ZAK+ run to
completion ensure Pr (CS𝑖 ) ≥ 1 − 𝛽𝑐 .

The proofs of Lemmas 4.1 and 4.2 are essentially same as those of Lemmas A.2 and A.3 that are used to prove
the statistical validity of ZAKR . This is because both 𝛼 ′

𝑓
of ZAKR and 𝛽𝑓 of ZAK+ are the nominal error of

feasibility check for one constraint of one system with a fixed threshold, and both 𝛼 ′
𝑐 of ZAKR and 𝛽𝑐 of ZAK+

are the nominal error of comparison between an inferior system and the best system [𝑏].
We are now ready to prove the statistical validity of ZAK+.

THEOREM 4.3. Under Assumptions 1 and 2, the ZAK+ procedure guarantees Pr{CS} ≥ 1 − 𝛼 .

The proof of Theorem 4.3 is provided in Appendix C.
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We now discuss how to choose implementation parameters 𝛽𝑓 and 𝛽𝑐 in simultaneous-running procedure ZAK+.
One approach is to first decide the choice of 𝑒 = 𝑠𝛽𝑓 /𝛽𝑐 when 𝑠 < 𝑑 and 𝑒 = 𝑑𝛽𝑓 /𝛽𝑐 when 𝑠 ≥ 𝑑. Recall that this
is the ratio of the error for a feasibility check of one system for all constraints and all thresholds to the error of a
comparison between two systems. The ratio should be decided based on the decision maker’s idea on whether she
wants to allocate more error to feasibility check or comparison. A detailed discussion on how we compute 𝛽𝑓 and
𝛽𝑐 is included in Appendix D.

In reality, as the decision maker usually does not have detailed information on the mean performance measures,
choosing the value of 𝑒 is not straightforward. [8] consider a single threshold vector and choose 𝑒 = 1 to balance the
errors assigned to feasibility check and comparison. As it is reasonable to allocate more of the errors to feasibility
check when multiple threshold vectors are under consideration, we use 𝑒 = 2 for our experimental results to
demonstrate the performance of our proposed procedure (based on the discussion in Section 6.2).

5 DIFFERENT PREFERENCE ORDERS OF INPUT THRESHOLD VECTORS
As discussed in Section 1, our procedures ZAKR,ZAK , and ZAK+ require lists of threshold vectors {q(1) , q(2) ,
. . . , q(𝑑) } and index vectors {𝑰 (1) , 𝑰 (2) , . . . , 𝑰 (𝑑) }. Having to manually enter preference order is tedious from both
a problem formulation and implementation points of view. Techniques for facilitating this makes our approach
more practical and useful. In this section, we discuss three preference orders for formulating the input threshold
vectors, namely ranked constraints, equally important constraints, and total violation with ranked constraints. The
experimental results for multiple constraints shown in Section 6 are based on these three preference orders.

Ranked constraints: The constraints are ranked with respect to their importance and the decision maker wants
to relax the least important constraint first while keeping the rest of the constraints fixed at the current threshold
values, and then move to the second least important constraint, etc. Figure 2(a) shows 𝐴𝜃 for 𝜃 = 1, . . . , 9 when
𝑠 = 2 and 𝑑1 = 𝑑2 = 3, the secondary performance measures are non-negative, and constraint 1 is more important
than constraint 2. The inventory example discussed in Sections 1 and 2 also has ranked constraints with constraint 1
being more important than constraint 2.

Equally important constraints: All constraints are equally important and the decision maker wants to relax all
constraints by one threshold at the same time. If the constraints do not all have the same number of thresholds, then
constraints that have gone through all their thresholds keep the “loosest" threshold (i.e., 𝑞ℓ,𝑑ℓ for constraint ℓ) while
the other constraints relax. Figure 2(b) shows this case for two constraints and three thresholds on each constraint.

Total violation with ranked constraints: The decision maker wants to minimize the number of total violations on
ranked constraints. For constraint ℓ with threshold 𝑞ℓ,𝑚 , its violation is defined as 𝑚 − 1 (relative to the tightest
threshold 𝑞ℓ,1). Then the total violation is defined as the sum of the violations for all constraints. The decision
maker always prefers threshold vectors that have fewer total violations, and among threshold vectors that have
the same total violation, her preference order is based the priority of the constraints. In Figure 2(c), constraint 1
more important than constraint 2. Region 𝐴1 is defined with respect to (𝑞1,1, 𝑞2,1) and has total violation 0. Regions
𝐴2 and 𝐴3 are defined with respect to (𝑞1,1, 𝑞2,2) and (𝑞1,2, 𝑞2,1), respectively, and have total violation 1, with 𝐴2
preferred to 𝐴3 due to the ranking of constraints 1 and 2. In this preference order, we start with a threshold vector
with total violation equal to 0 and then relax the total violation by relaxing the less important constraint first. The
largest total violation is

∑𝑠
ℓ=1 (𝑑ℓ − 1).

The detailed algorithm statements of how to construct the three preference orders are included in Appendix E.
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6 EXPERIMENTAL RESULTS
In this section, we present experimental results to demonstrate the performances of our proposed procedures
ZAKR,ZAK, and ZAK+. We compare them with alternative procedures that iteratively apply sequential or
simultaneous procedures to threshold vectors q(1) , . . . , q(𝑑) . If a single constraint is considered, our alternative
procedures use AK or AK+ due to [1] for each threshold value. If multiple constraints are considered, our
alternative procedures use HAK or HAK+ due to [8] for each threshold vector. We name the procedures
that iteratively implement AK and AK+ as RestartAK and RestartAK+, respectively. Similarly, we name the
procedures that iteratively implement HAK and HAK+ as RestartHAK and RestartHAK+, respectively. Notice
that RestartAK (RestartAK+) is the special case of RestartHAK (RestartHAK+) when the number of constraints is
one and therefore does not need to be considered separately. We provide the algorithm statements and discussions
of the statistical validity of procedures RestartHAK and RestartHAK+ in Appendices F and G, respectively.

All the experimental results are based on 10,000 macro replications with 𝛼 = 0.05 and 𝑛0 = 20 and we report
average numbers of observations (OBS) and estimated probability of correct selection (PCS). We set 𝑘 = 100 and
𝛿 = 𝜖ℓ = 1/√𝑛0, where ℓ = 1, . . . , 𝑠 (except for Section 6.5). We discuss the experimental configurations in Section
6.1 and how we set the implementation parameters for our proposed procedures in Section 6.2. We then provide
the experimental results to show that our proposed procedures are statistically valid and efficient in Sections 6.3
and 6.4, respectively. Experimental results for the inventory example discussed in Sections 1 and 2 are provided in
Section 6.5. Appendix J discusses the impact of applying CRN in our proposed procedures.

6.1 Experimental Configurations
In this section, we discuss the mean and variance configurations for primary and secondary performance measures.
We consider three mean configurations of systems, namely difficult means (DM), monotone increasing means
(MIM), and monotone decreasing means (MDM). All the configurations depend on the number of systems 𝑏 that
are desirable with respect to threshold vector q(𝜃

∗) . As the existence of acceptable systems will not lower the PCS
(because declaring acceptable systems feasible or infeasible with respect to a specific threshold value are both
considered as correct feasibility decisions) and as [1] show by experiments that the presence of acceptable systems
does not significantly affect the overall performance of procedures AK and AK+, we do not include acceptable
systems in our three configurations.

As the purpose of the DM configuration is to demonstrate the performance of the proposed procedures under
a difficult case, we set the difference between any two consecutive thresholds on one constraint to the minimum
possible value, so that the boundary of the unacceptable region of 𝑞ℓ,𝑚 is the boundary of the desirable region
of 𝑞ℓ,𝑚+1. This is achieved by setting 𝑞ℓ,𝑚+1 − 𝑞ℓ,𝑚 equal to 2𝜖ℓ for all 𝑚 and ℓ . When 𝜃 ∗ < 𝑑, the means of all
secondary performance measures are set to the boundary of the desirable region of q(𝜃

∗) for 𝑏 systems (i.e., the
mean of secondary performance measure ℓ for 𝑏 systems is 𝑞 (𝜃 ∗)

ℓ
− 𝜖ℓ ). For the other (𝑘 − 𝑏) systems, to make the

feasibility check difficult, the means of their secondary measures are set to the boundary of the desirable region of
q(𝜃

∗+1) (i.e., the means of secondary performance measure ℓ for (𝑘 −𝑏) systems is 𝑞 (𝜃 ∗+1)
ℓ

− 𝜖ℓ ). When 𝜃 ∗ = 𝑑 , the 𝑏
systems that are feasible to q(𝜃

∗) are set the same as when 𝜃 ∗ < 𝑑 . For the remaining (𝑘 − 𝑏) systems, we set them
at the boundary of the unacceptable region for the largest threshold of all constraints ℓ (i.e., 𝑦𝑖ℓ = 𝑞ℓ,𝑑ℓ + 𝜖ℓ when
𝑖 = 𝑏 + 1, . . . , 𝑘). When 𝜃 ∗ = 𝑑 + 1, as all systems are infeasible to all the threshold vectors considered (i.e., 𝑏 = 0),
the means of the secondary performance measures of all the systems are set as 𝑦𝑖ℓ = 𝑞ℓ,𝑑ℓ + 𝜖ℓ for all 𝑖 and ℓ .

Moreover, the DM configuration has one system whose mean performance of the primary performance is 𝛿 ,
the other systems that are feasible with respect to q(𝜃

∗) have primary performances equal to 0, and all infeasible
systems with respect to q(𝜃

∗) have 2𝛿 as their primary performance measures. This means that all the infeasible
systems are superior compared with the best system while all other feasible systems are only 𝛿 inferior compared
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with the best system, which makes the comparison also difficult. More specifically, in the DM configuration,

𝑥𝑖 = E [𝑋𝑖𝑛] =


0, 𝑖 = 1, 2, . . . , 𝑏 − 1,
𝛿, 𝑖 = 𝑏,

2𝛿, 𝑖 = 𝑏 + 1, . . . , 𝑘 .

For all constraints ℓ = 1, . . . , 𝑠, if 1 ≤ 𝜃 ∗ ≤ 𝑑 − 1,

𝑦𝑖ℓ = E[𝑌𝑖ℓ𝑛] =
{

𝑞
(𝜃 ∗)
ℓ

− 𝜖ℓ , 𝑖 = 1, 2, . . . , 𝑏,
𝑞
(𝜃 ∗+1)
ℓ

− 𝜖ℓ , 𝑖 = 𝑏 + 1, . . . , 𝑘 ;

if 𝜃 ∗ = 𝑑 ,

𝑦𝑖ℓ = E[𝑌𝑖ℓ𝑛] =
{

𝑞
(𝜃 ∗)
ℓ

− 𝜖ℓ , 𝑖 = 1, 2, . . . , 𝑏,
𝑞ℓ,𝑑ℓ + 𝜖ℓ , 𝑖 = 𝑏 + 1, . . . , 𝑘 ;

and if 𝜃 ∗ = 𝑑 + 1, 𝑦𝑖ℓ = E[𝑌𝑖ℓ𝑛] = 𝑞ℓ,𝑑ℓ + 𝜖ℓ for all 𝑖. We consider the case when the decision maker prefers threshold
𝑞ℓ,1 = 0 for constraint ℓ , and relax the constraint threshold by 2𝜖ℓ every time when she wants to consider a “looser”
threshold value on that constraint. For example, we choose thresholds {0, 2𝜖ℓ } and {0, 2𝜖ℓ , 4𝜖ℓ , 6𝜖ℓ } on constraint ℓ
when there are two or four thresholds in consideration, respectively.

On the other hand, as the purpose of the MIM and the MDM configurations is to show the efficiency of the
proposed procedures in realistic settings, we set the differences between two consecutive thresholds larger than
in the DM configuration to see how effectively the proposed procedures remove infeasible systems. In particular,
we choose the smallest distance between two consecutive thresholds on constraint ℓ in the MIM and MDM
configurations as 4𝜖ℓ . When 𝜃 ∗ ≤ 𝑑 , the means of all secondary performance measures are set to the interior of the
desirable region of q(𝜃

∗) for 𝑏 systems and the other (𝑘 − 𝑏) systems are evenly distributed over the interiors of
𝐴 (𝜃 ∗+1) , . . . , 𝐴 (𝑑+1) with respect to their secondary performance measures (i.e., for the systems in 𝐴 (𝜃 ) , the mean
of secondary performance measure ℓ is set within the desirable region of q(𝜃 ) as 𝑞 (𝜃 )

ℓ
− 2𝜖ℓ where 𝜃 = 𝜃 ∗, . . . , 𝑑,

and as 𝑞ℓ,𝑑ℓ + 2𝜖ℓ when 𝜃 = 𝑑 + 1). When 𝜃 ∗ = 𝑑 + 1, we set the means of the secondary performance measures
to the interior of the unacceptable region for the largest thresholds of all constraints ℓ (i.e., 𝑦𝑖ℓ = 𝑞ℓ,𝑑ℓ + 2𝜖ℓ for
all constraint ℓ). We also let the means of the primary performance measure be monotonically increasing from 0
with an increment of 𝛿 for the MIM configuration, and let the primary performance measure be monotonically
decreasing from (𝑘 − 1)𝛿 with a decrement of 𝛿 for the MDM configuration. This makes the comparison easier
than in the DM configuration.

More specifically, we set 𝑥𝑖 = E [𝑋𝑖𝑛] = (𝑖 − 1)𝛿, 𝑖 = 1, . . . , 𝑘 for the MIM configuration and set 𝑥𝑖 = E [𝑋𝑖𝑛] =
(𝑘 − 𝑖)𝛿, 𝑖 = 1, . . . , 𝑘 for the MDM configuration. The means of the secondary performance measures of the MIM
and the MDM configurations are the same. For all constraints ℓ = 1, . . . , 𝑠, if 1 ≤ 𝜃 ∗ ≤ 𝑑 ,

𝑦𝑖ℓ = E[𝑌𝑖ℓ𝑛] =



𝑞
(𝜃 ∗)
ℓ

− 2𝜖ℓ , 𝑖 = 1, 2, . . . , 𝑏,
𝑞
(𝜃 ∗+1)
ℓ

− 2𝜖ℓ , 𝑖 = 𝑏 + 1, . . . , ⌈𝑏 + 𝑘−𝑏
𝑑+1−𝜃 ∗ ⌉,

𝑞
(𝜃 ∗+2)
ℓ

− 2𝜖ℓ , 𝑖 = ⌈𝑏 + 𝑘−𝑏
𝑑+1−𝜃 ∗ ⌉ + 1, . . . , ⌈𝑏 + 2 𝑘−𝑏

𝑑+1−𝜃 ∗ ⌉,
. . .

𝑞
(𝑑)
ℓ

− 2𝜖ℓ , 𝑖 = ⌈𝑏 + (𝑑 − 𝜃 ∗ − 1) 𝑘−𝑏
𝑑+1−𝜃 ∗ ⌉ + 1, . . . , ⌈𝑏 + (𝑑 − 𝜃 ∗) 𝑘−𝑏

𝑑+1−𝜃 ∗ ⌉,
𝑞ℓ,𝑑ℓ + 2𝜖ℓ , 𝑖 = ⌈𝑏 + (𝑑 − 𝜃 ∗) 𝑘−𝑏

𝑑+1−𝜃 ∗ ⌉ + 1, . . . , 𝑘 ;

and if 𝜃 ∗ = 𝑑 + 1, 𝑦𝑖ℓ = E[𝑌𝑖ℓ𝑛] = 𝑞ℓ,𝑑ℓ + 2𝜖ℓ for all 𝑖. The decision maker prefers 𝑞ℓ,1 = 0, and we relax the constraint
threshold by 4𝜖ℓ when she wants to consider “looser” threshold values. For example, for the cases of two and four
thresholds, we choose thresholds {0, 4𝜖ℓ } and {0, 4𝜖ℓ , 8𝜖ℓ , 12𝜖ℓ } on constraint ℓ , respectively.
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We consider three variance configurations to test different levels of relative difficulty of the feasibility check and
the comparison. We use 𝜎2

𝑥𝑖
to denote the variance of the primary performance from system 𝑖, 𝜎2

𝑦𝑖ℓ
to denote the

variance of the secondary performance ℓ from system 𝑖, and consider both low variance (L) and high variance (H).
When the difficulty between feasibility checks and comparison are similar, we set 𝜎2

𝑥𝑖
= 1 and 𝜎2

𝑦𝑖ℓ
= 1 (L/L); when

the comparison is relatively more difficult than the feasibility checks, we set 𝜎2
𝑥𝑖

= 5 and 𝜎2
𝑦𝑖ℓ

= 1 (H/L); and when
the feasibility checks are relatively more difficult than comparison, we set 𝜎2

𝑥𝑖
= 1 and 𝜎2

𝑦𝑖ℓ
= 5 (L/H).

[1] shows that the correlation between the primary and secondary performance measures does not have a
significant impact on the experimental results. [8] and [22] also report the same tendency. Therefore, we assume
the observations for the primary and secondary performance measures from each system are independent normal
random variables through Sections 6.2–6.4. Section 6.5 illustrates how to apply our procedures in an inventory
example where the observations are not necessarily normally distributed, the primary and secondary performance
measures are correlated, and the secondary performance measures are also correlated.

With 10,000 macro replications, the first four digits of the OBS showed in the tables are meaningful, and the
estimated PCS values are meaningful up to the 0.001th digit.

6.2 Implementation Parameters
In this section, we discuss how we set the implementation parameters 𝑒1, 𝑒2, and 𝑒 for the proposed procedures
ZAKR , ZAK, and ZAK+.

As discussed in Appendix B, we introduce two approaches of setting the implementation parameters for
procedures ZAK𝑅 and ZAK, namely setting 𝑒1 = 𝛼 𝑓 /𝛼𝑐 and setting 𝑒2 = 𝑠𝛼 ′

𝑓
/𝛼 ′

𝑐 . We let ZAKR
1 (ZAK1)

denote the version of procedure ZAKR (ZAK) that sets the implementation parameter as 𝑒1 = 𝛼 𝑓 /𝛼𝑐 . Similarly,
we let ZAKR

2 (ZAK2) be the corresponding procedure that uses 𝑒2 = 𝑠𝛼 ′
𝑓
/𝛼 ′

𝑐 . Note that ZAK+ only has one
setting of its implementation parameters, namely 𝑒 = 𝑠𝛽𝑓 /𝛽𝑐 , as discussed in Sections 4.2 and Appendix D.

For the brevity, experimental settings and results are given in Appendix H. As discussed in Appendices B and D,
the optimal values of 𝑒1, 𝑒2 or 𝑒 (that result in the smallest OBS) depend on the mean and variance configurations of
the primary and secondary performance measures of the systems. In the experimental results we test, the difficulty
of feasibility check for one threshold of one constraint is similar as for comparing one system with the best system
[𝑏]. This suggests that 𝑒1 = 𝑒2 = 𝑒 = 𝑠 might be a good choice. In fact, the OBS achieves its minimum value for
different choices of 𝑒1, 𝑒2, or 𝑒 ranging from 1 to 7. In addition, we notice that the OBS is quite flat around the 𝑒1, 𝑒2,
or 𝑒 with the smallest OBS for each proposed procedure. We also notice that the OBS is similar between the two
settings of the implementation parameters (𝑒1 and 𝑒2) of ZAKR and ZAK , respectively. For these reasons, in the
remaining sections we only consider ZAKR

2 and ZAK2 with 𝑒2 = 2 = 𝑠𝛼 ′
𝑓
/𝛼 ′

𝑐 and ZAK+ with 𝑒 = 2 = 𝑠𝛽𝑓 /𝛽𝑐
(see also the discussion in Appendices B and D). In all cases, the minimum OBS is no more than 2.36% from the
OBS when 𝑒2 or 𝑒 equals 2.

6.3 Statistical Validity
In this section, we present experimental results that document the statistical validity of our proposed procedures.
The experimental results shown in this section are all under the DM mean configuration since correct selection is
more difficult in the DM mean configuration than in the MIM or MDM mean configurations.

We first consider the case of a single constraint with four thresholds {0, 2𝜖1, 4𝜖1, 6𝜖1}. Table 1 shows the estimated
PCS under our three variance configurations and all possible 𝜃 ∗ when 𝑏 ∈ {25, 50, 75} (except that 𝑏 = 0 when
𝜃 ∗ = 5 because all systems are infeasible). We see that the estimated PCS values of all proposed procedures
are above the nominal level 0.95 under all variance configurations, all possible values of 𝜃 ∗, and all values of 𝑏
considered. One may also notice that 𝜃 ∗ = 5 and 𝜃 ∗ = 1 (to a lesser extent) achieve higher estimated PCS compared
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with other values of 𝜃 ∗. During Phase I, one needs to ensure that three events happen, namely declaring systems
in 𝑆𝑢 infeasible to threshold vectors q(1) , . . . , q(𝜃

∗) , declaring the best system [𝑏] feasible to q(𝜃
∗) , and declaring

systems in 𝑆𝑎′ ∪ 𝑆𝑑 infeasible to threshold vectors q(1) , . . . , q(𝜃
∗−1) (see the detailed analysis in Sections A and 4.2).

Moreover, when 𝜃 ∗ = 𝑑 + 1, the best system does not exist and therefore we do not need to perform Phase II to
achieve CS. As a more preferred threshold vector does not exist when 𝜃 ∗ = 1 and the best system does not exist
when 𝜃 ∗ = 5, we have fewer sources of error and therefore achieve a higher estimated PCS under those two cases.

Table 1 also indicates that for 1 < 𝜃 ∗ ≤ 𝑑 , the estimated PCS decreases in general when 𝑏 increases. As the three
events required by Phase I involve essentially making one difficult feasibility decision correctly for each system
(i.e., declaring systems in 𝑆𝑢 infeasible to q(𝜃

∗) , declaring system [𝑏] feasible to q(𝜃
∗) , and declaring the remaining

𝑏 − 1 systems infeasible to q(𝜃
∗−1) ), different values of 𝑏 do not affect the difficulty of Phase I much. However,

increasing 𝑏 requires more correct comparison decisions in order to eliminate the inferior systems (compared to
[𝑏]) that are feasible to q(𝜃

∗) in Phase II. Combining Phases I and II, the estimated PCS is expected to decrease as 𝑏
increases. On the other hand, when 𝜃 ∗ = 1, as there does not exist threshold vector q(𝜃

∗−1) , there is one less source
of concluding incorrect decisions in Phase I (i.e., declaring 𝑏 − 1 systems infeasible to q(𝜃

∗−1) ). Thus increasing
𝑏 makes Phase I less difficult. Combining Phases I and II, depending on the value of 𝑏 and the error allocated to
feasibility checks or comparison, the estimated PCS may behave differently. When 𝜃 ∗ = 𝑑 + 1, all systems are
infeasible, which means that 𝑏 remains 0. For simplicity, we fixed 𝑏 = 25 when 𝜃 ∗ ≤ 𝑑 for the remainder of this
section. Note that the estimated PCS values do not differ much for different variance configurations, thus, we also
fix the L/L variance configuration in the rest of this section.

Table 1. Estimated PCS ofZAKR ,ZAK , andZAK+ for 𝑘 = 100 systems and 𝑠 = 1 constraint with four thresholds under
the DM configuration

ZAKR ZAK ZAK+
𝜃∗ 𝑏 = 25 𝑏 = 50 𝑏 = 75 𝑏 = 25 𝑏 = 50 𝑏 = 75 𝑏 = 25 𝑏 = 50 𝑏 = 75

L/L

1 0.985 0.986 0.985 0.979 0.981 0.987 0.986 0.986 0.987
2 0.977 0.971 0.964 0.971 0.971 0.963 0.977 0.972 0.967
3 0.976 0.971 0.961 0.973 0.968 0.967 0.977 0.973 0.967
4 0.981 0.969 0.967 0.974 0.969 0.965 0.978 0.973 0.962
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

L/H

1 0.984 0.986 0.987 0.986 0.991 0.995 0.985 0.987 0.988
2 0.976 0.967 0.962 0.980 0.978 0.973 0.978 0.970 0.969
3 0.977 0.967 0.966 0.980 0.973 0.972 0.978 0.973 0.964
4 0.977 0.971 0.963 0.977 0.977 0.973 0.980 0.968 0.968
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H/L

1 0.985 0.986 0.986 0.978 0.977 0.983 0.984 0.988 0.986
2 0.978 0.970 0.965 0.969 0.965 0.964 0.977 0.973 0.964
3 0.979 0.970 0.963 0.970 0.964 0.962 0.977 0.972 0.964
4 0.979 0.973 0.967 0.969 0.964 0.961 0.979 0.970 0.968
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

We then consider a case when two constraints are present. Each constraint contains three thresholds {0, 2𝜖ℓ , 4𝜖ℓ }
for ℓ = 1, 2. Figure 4 shows the estimated PCS of the proposed procedures ZAKR , ZAK, and ZAK+ with
respect to all possible values of 𝜃 ∗ under our three preference orders. Thus, 𝑑 = 9 for the ranked constraints and the
total violation with ranked constraints formulations and 𝑑 = 3 for the equally important constraints formulation.

Figure 4 indicates that all three proposed procedures are statistically valid under our three preference orders. Note
that the PCS is quite flat for all 𝜃 ∗ under the equally important constraints formulation. As the equally important
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constraints formulation relaxes all constraints by one threshold (if the constraint has at least one “looser" threshold)
every time when one considers a less preferred threshold vector, declaring systems in 𝑆𝑢 is easier than in the
other two preference orders. Therefore, the estimated PCS for different 𝜃 ∗ under equally important constraints is
relatively high in general. For the ranked constraints and the total violation with ranked constraints formulations,
due to a similar reason as in the single constraint case, 𝜃 ∗ = 1 and 𝜃 ∗ = 𝑑 + 1 achieve higher estimated PCS
compared with the other 𝜃 ∗. One may notice that 𝜃 ∗ = 𝑑 also achieves a relatively high estimated PCS under these
two preference orders. This is due to the mean configuration of the secondary performances we use for the systems
that are infeasible to q(𝑑) . In the DM configuration, we allocate 𝑏 systems in 𝐴𝜃 ∗ and (𝑘 − 𝑏) systems to 𝐴𝜃 ∗+1.
When 𝜃 ∗ = 𝑑 , we set all secondary performance measures of the (𝑘 − 𝑏) systems that are infeasible to q(𝑑) equal to
𝑦𝑖ℓ = 5𝜖ℓ (see the discussion in Section 6.1), which makes the detection of infeasibility of those systems easy (as
the systems are infeasible to both constraints).

(a) Estimated PCS for ranked constraints (b) Estimated PCS for equally important constraints

(c) Estimated PCS for total violation with ranked constraints

Fig. 4. Estimated PCS when 𝑠 = 2 under our three threshold formulations as a function of 𝜃∗.
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6.4 Efficiency
In this section, we address the efficiency of our proposed procedures compared with the alternative procedures
RestartHAK and RestartHAK+ under the DM, MIM, and MDM configurations.

Table 2 shows OBS for the single constraint case under the DM configuration with four thresholds (the same
experimental setting as in Table 1). We see that ZAK requires fewer OBS compared with ZAKR when 1 ≤ 𝜃 ∗ ≤ 4.
This is expected as ZAK sets the implementation parameter for Phase II more efficiently than ZAKR (see the
discussion in Section 3). When 𝜃 ∗ = 5, ZAKR and ZAK have similar performance as all systems are infeasible
to q(𝑑) and Phase II is not needed to achieve CS. Therefore, we omit the results for ZAKR from now on. We
also see that the OBS increases with 𝑏 for all three procedures. This is due to the fact that having more inferior
systems that are feasible to q(𝜃

∗) requires more correct feasibility and comparison decisions to achieve the final
CS (on top of the feasibility decisions). One may also notice that all three proposed procedures require much
fewer observations when 𝜃 ∗ = 5 compared with other values of 𝜃 ∗. This is because all systems are infeasible when
𝜃 ∗ = 5 and thus do not require observations for Phase II to achieve correct selection. In terms of the comparison
between ZAK and ZAK+, we see that ZAK is more efficient than ZAK+ in general under the L/L and H/L
variance configurations while ZAK+ is more efficient in general under the L/H variance configuration. This is
because ZAK+ performs the feasibility checks and comparison simultaneously. Hence inferior feasible systems
with respect to q(𝜃

∗) can be eliminated before knowing their feasibility with respect to q(𝜃
∗) , and this benefit is

more obvious when the comparison is easier than the feasibility checks (i.e., L/H variance configuration). Also, we
observe that the L/L variance configuration requires the smallest number of OBS. This is expected because lower
variance results in an easier problem. However, H/L requires fewer OBS compared with L/H when 𝑏 is relatively
small (e.g., 𝑏 = 25) whereas L/H is better when 𝑏 is relatively large (e.g., 𝑏 = 75). This is reasonable because the 𝑏
inferior but feasible systems are often eliminated by comparison. Hence, the H/L variance configuration performs
better when 𝑏 is small. For simplicity, we fixed 𝑏 = 25 and the L/L variance configuration in the rest of this section.

Table 2. Average number of observations ofZAKR ,ZAK , andZAK+ for 𝑘 = 100 systems and 𝑠 = 1 constraint with four
thresholds under the DM configuration

ZAKR ZAK ZAK+
𝜃∗ 𝑏 = 25 𝑏 = 50 𝑏 = 75 𝑏 = 25 𝑏 = 50 𝑏 = 75 𝑏 = 25 𝑏 = 50 𝑏 = 75

L/L

1 22659 29344 35537 17350 20628 24208 19037 22218 24885
2 23261 30454 37087 17559 20906 24555 19112 22348 25231
3 23241 30416 37008 17531 20891 24580 19119 22350 25231
4 23225 30396 37055 17506 20876 24543 19077 22377 25238
5 8904 8904 8904 8924 8924 8924 8893 8893 8893

L/H

1 81402 87996 94254 73911 73924 74139 65610 59200 52238
2 84708 94334 103777 77111 80405 83861 71847 73425 74957
3 84711 94421 103925 77160 80383 83867 71764 73383 75001
4 84539 94381 103789 76941 80383 83846 71692 73345 74945
5 44119 44119 44119 44215 44215 44215 44065 44065 44065

H/L

1 53562 86764 117509 39708 69173 100260 50006 79456 106285
2 54008 86959 117396 39392 68505 98487 49681 78348 104534
3 53975 87151 117446 39476 68365 98184 49537 78446 104392
4 53957 87024 117576 39440 68321 98170 49672 78297 104480
5 8904 8904 8904 8924 8924 8924 8893 8893 8893

We then consider the single constraint case with ten thresholds under the L/L variance configuration. Figure
5 shows the results for OBS of the proposed procedures ZAK and ZAK+ and their competing procedures
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RestartAK and RestartAK+ under the DM and MIM configuration (the corresponding results for the MDM
configuration are provided in Figure A.3). We see that ZAK and ZAK+ outperform RestartAK and RestartAK+,
respectively. This is expected as RestartAK and RestartAK+ allocate the nominal error for the ten thresholds and
thus the resulting continuation regions used for feasibility check and for comparison are larger than those of ZAK
and ZAK+. We also see that the required observations increase dramatically for RestartAK and RestartAK+

when 𝜃 ∗ increases, while the required observations for ZAK and ZAK+ remain steady for all possible 𝜃 ∗. This
is because RestartAK and RestartAK+ need to implement AK or AK+ multiple times when 𝜃 ∗ gets larger and
thus become very conservative, while ZAK and ZAK+ are designed for one critical threshold per constraint
regardless of the number of threshold values on that constraint. Note that ZAK and ZAK+ require much fewer
OBS when 𝜃 ∗ = 11 compared with other values of 𝜃 ∗ (except for ZAK+ under the MDM configuration). This
is due to a similar reason as in the four thresholds case as all systems are eliminated by their infeasibility when
𝜃 ∗ = 11 and thus we do not need to wait for comparison among feasible systems to be completed. (The different
behavior of ZAK+ under the MDM configuration is because under MDM the system with the highest mean
falls in the most preferred region, and hence when 𝜃 ∗ ≤ 10, the infeasible systems can be eliminated by both
feasibility check and comparison while the infeasible systems under MIM can only be eliminated by the feasibility
check.) We see that RestartAK and RestartAK+ also show a sharp decrease in OBS when 𝜃 ∗ = 11 (except for
RestartAK+ under the MDM configuration), whereas OBS keeps increasing from 𝜃 ∗ = 1 to 10. This is due to
similar reasons as for ZAK and ZAK+. However, as RestartAK and RestartAK+ perform AK and AK+ eleven
times until its termination, the OBS is still relatively high when 𝜃 ∗ = 11. As the performance of ZAK and
ZAK+ is expected to be significantly better than RestartAK and RestartAK+, we omit the results for RestartAK

and RestartAK+ (and RestartHAK and RestartHAK+ when multiple constraints are considered) and focus on
comparing the performance of ZAK and ZAK+ in the remainder of this section. Our results comparing all four
procedures in the multiple constraints case are included in Appendix I. We see that ZAK+ performs better or
similar to ZAK and RestartHAK performs better than RestartHAK+ under all cases we consider.

(a) OBS under DM (b) OBS under MIM

Fig. 5. Average number of observations ofZAK, RestartAK ,ZAK+ and RestartAK+ as functions of 𝜃∗ for 𝑘 = 100 systems
and 𝑠 = 1 constraint with ten thresholds under the DM and the MIM configurations.

We now consider the two constraints case where each constraint contains three thresholds under the ranked
constraints formulation and the MIM and MDM configurations (same experimental setting as when 𝑠 = 2 under the
ranked constraints formulation in Section 6.3 except for the mean configuration). Figure 6 shows the results of
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OBS for procedures ZAK and ZAK+. We see that ZAK+ performs significantly better than ZAK under the
MDM configuration, while their performance is similar under the MIM configuration. This is because under the
MDM configuration, the best system [𝑏] is feasible to the most preferred threshold vector q(1) . As ZAK+ does
not require both the comparison and feasibility decisions to be concluded to eliminate inferior systems or infeasible
systems with respect to q(𝜃

∗) (while ZAK needs to complete the feasibility check phase to eliminate infeasible
systems with respect to q(𝜃

∗) ), when the best system [𝑏] is feasible to q(1) , it can eliminate inferior systems once
their feasibility is known to be no better than that of [𝑏] (this does not require concluding feasibility decisions
for all the possible threshold vectors). On the other hand, the MIM configuration sets the infeasible systems with
respect to q(𝜃

∗) as superior systems compared with [𝑏], and hence those systems can only be eliminated once we
make sure that they are not feasible to an improved threshold vector.

(a) OBS under MIM (b) OBS under MDM

Fig. 6. Average number of observations ofZAK andZAK+ as functions of 𝜃∗ for 𝑘 = 100 systems and 𝑠 = 2 constraints
under the MIM and MDM configurations for the ranked constraints formulation.

Figure 7 also shows the experimental results for two constraints with three thresholds on each constraint for the
equally important constraints formulation and the MIM and the MDM configurations (same setting as in Figure 6
except for the preference order). The result shows a similar pattern as under the ranked constraints formulation.
The dominance of ZAK+ is more obvious under the MDM configuration than under the MIM configuration. As
the results for the total violation with ranked constraints formulation also show a similar pattern, we omit them
here for the sake of space and include them in Appendix I.

As the MIM and MDM configurations aim to show the performance of the proposed procedures in realistic
settings, we focus on the comparison between ZAK and ZAK+ under those two configurations. Based on
the results shown in this section and Appendix I, we see that ZAK+ shows a significant improvement over
ZAK under the MDM configuration while also outperforming ZAK in most cases under the MIM configuration.
Therefore, since the decision maker usually does not have much information about the means of the systems in
practice, we recommend ZAK+ as it provides the best overall performance.

6.5 Inventory Policy Example
In this section, we study the performance of ZAK and ZAK+, as well as their competing procedures RestartHAK

and RestartHAK+, on an (𝑠, 𝑆) inventory policy example based on a similar setting as in [14]. Note that this example
is similar to the problem we discussed in Sections 1 and 2 but with additional thresholds.
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(a) OBS under MIM (b) OBS under MDM

Fig. 7. Average number of observations ofZAK andZAK+ as functions of 𝜃∗ for 𝑘 = 100 systems and 𝑠 = 2 constraints
under the MIM and MDM configurations for the equally important constraints formulation.

A decision maker controls inventory using an (𝑠, 𝑆) policy, and the costs are given as (i) ordering cost at 3 per
item; (ii) fixed ordering cost at 32 per order; (iii) holding cost at 1 per item per review period; and (iv) penalty cost
at 5 per item of unsatisfied demand. The primary performance measure is the fill rate per review period (the decision
maker hopes to maximize the primary performance measure) and the two secondary performance measures are
(1) the failure probability (ℓ = 1), which is the probability that a shortage occurs between two successive review
periods; and (2) the expected cost per review period (ℓ = 2), which is the average total cost for each review period.
Systems in consideration are given as

Γ = {(𝑠, 𝑆) | 𝑠 = 20 + 2𝑚′, 𝑆 = 40 + 10𝑛′, where𝑚′ = 0, 1, 2, . . . , 10, and 𝑛′ = 0, 1, 2, . . . , 6} ,
which contains 77 systems in total. Demand during each review period is assumed independent for different review
periods and follows a Poisson distribution with mean 25. The run-length for each replication is set to 100 review
periods and we obtain one observation for the fill rate, failure probability, and average cost per review period from
each replication, respectively, to estimate the primary and secondary performance measures. We also estimate
the correlation between the primary performance measure and each constraint, as well as the correlation between
the two constraints, based on 1000 observations. The range of the correlation between the primary performance
measure and the failure probability constraint (expected cost constraint) ranges from -1 to -0.7781 (from -0.7355 to
0.0731). The correlation between the two constraints ranges from -0.2334 to 0.5489.

We test procedures ZAK , RestartHAK , ZAK+, and RestartHAK+ with three thresholds on the first constraint
(𝑞1 ∈ {0.01, 0.05, 0.1}) and eight thresholds on the second constraint (𝑞2 ∈ {100, 105, 110, 115, 120, 125, 130, 135}).
We formulate the input threshold vectors based on the three preference orders discussed in Section 5, i.e., ranked
constraints, equally important constraints, and total violation with ranked constraints. For the ranked constraints
and the total violation with ranked constraints formulations, consistent with the formulations in Section 5, we
prioritize the first constraint over the second constraint (relax the second constraint first) and have 24 feasible
regions (i.e., 𝑑 = 24). For the equally important constraints formulation, we have 8 feasible regions (i.e., 𝑑 = 8). An
analysis based on a Markov chain model shows that the best system is (28, 60) whose analytical value of fill rate
is 0.9981, failure probability is 0.0211, and expected cost per review period is 113.9701. Therefore, we set the
IZ parameter as 𝛿 = 0.001 and the tolerance levels as 𝜖1 = 0.001 and 𝜖2 = 0.5. The value of 𝜃 ∗ is 12, 4, and 11 for
ranked constraints, equally important constraints, and total violation with ranked constraints, respectively, which
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corresponds to the threshold vector (𝑞1, 𝑞2) = (0.05, 115) for ranked constraints and total violation with ranked
constraints and (𝑞1, 𝑞2) = (0.1, 115) for the equally important constraints. We expect the comparison phase to be
easier than the feasibility check phase because the variance of the difference in the fill rate is very small compared
to the variance of cost per review period. Thus we do not employ CRN. The experimental results are based on
10,000 replications and are shown in Table 3.

Table 3. Average number of observations and estimated PCS (reported in parentheses) of ZAK , RestartHAK , ZAK+ and
RestartHAK+ for the inventory policy example

Preference Order ZAK RestartHAK ZAK+ RestartHAK+

Ranked constraints
9547 21769 6066 17799

(1.000) (1.000) (1.000) (1.000)
Equally important 7819 16240 2490 7475

constraints (1.000) (1.000) (1.000) (1.000)
Total violation with 8778 30158 6034 26023
ranked constraints (1.000) (1.000) (1.000) (1.000)

We see that under the ranked constraints and equally important constraints formulations, ZAK spends around
44% and 48% of the observations compared to those of RestartHAK whereas ZAK+ spends around 34% and 33%
compared with RestartHAK+, respectively. When it comes to the total violation with ranked constraints formulation,
the savings is more pronounced as ZAK and ZAK+ spend around 29% and 23% of the observations compared
to those of RestartHAK and RestartHAK+, respectively. Both proposed procedures perform much better than their
alternative procedures while also remaining statistically valid. In terms of the comparison between ZAK and
ZAK+, we observe that ZAK+ performs better under all three threshold formulations, while the advantage of
ZAK+ is more obvious under the equally important constraints formulation. We also see that the comparison
between RestartHAK and RestartHAK shows a similar pattern as RestartHAK+ performs better than RestartHAK

under all three threshold formulations and the equally important constraints formulation makes the dominance
more clear. Note that this agrees with the results in Section 6.4.

7 CONCLUSION
We consider the selection-of-the-best problem when subjective stochastic constraints are present. When a decision
maker has flexibility with thresholds, this allows her to start with tight threshold values for each constraint and
then relax the thresholds until feasible systems are found and compared. We discuss how to combine thresholds
on constraints into threshold vectors based on how a decision maker prioritizes each constraint. We propose
two procedures that select the best system with respect to a primary performance measure while also satisfying
constraints on secondary performance measures with respect to the most preferred thresholds possible. Our
procedures differ in that one runs feasibility check and comparison sequentially while the other runs them
simultaneously. We discuss how to set the implementation parameters for our procedures and prove their statistical
validity. We also demonstrate through experiments that the required number of observations remains steady when
the number of threshold vectors grows and address the impact of applying CRN when performing our procedures.
Finally, our experimental results show that the proposed procedures perform well in reducing the average number
of needed observations as compared with procedures that repeatedly solve the problem for each threshold vector.
Overall, we recommend our simultaneously-running procedure as it provides the best performance in general.
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APPENDIX
In Appendix A, we provide the detailed algorithm statement of Procedure ZAKR from Section 3 along with
the discussion on its statistical validity. Appendix B describes how we set implementation parameters for the
proposed sequentially-running procedures. We provide the proof of the statistical validity of Procedure ZAK+
in Appendix C and include how to set its implementation parameters in Appendix D. Appendix E includes the
algorithms that we use to generate the three example preference orders discussed in Section 5. In Appendices F
and G, we describe procedures RestartHAK and RestartHAK+ and discuss their statistical validity, respectively.
Appendices H and I provide additional experimental results that are used to set the implementation parameters
of our proposed procedures and to demonstrate the efficiency of our proposed procedures, respectively. Finally,
Appendix J provides experimental results and a discussion on the impact of using CRNs.

A PROCEDURE ZAKR

In this section, we provide the detailed description of the ZAKR procedure and prove its statistical validity.
Algorithm A.1 gives the full description of ZAKR . Note that it is possible to use 𝑟 rather than 𝑟𝑖 in Phase I in

ZAKR . To prove the statistical validity of ZAKR , we start with the following lemma.

LEMMA A.1. Under Assumption 1, for system 𝑖 and constraint ℓ with specific threshold value 𝑞ℓ,𝑚 , the
[Feasibility Check] steps in ZAKR that run to completion ensure Pr(CD𝑖ℓ (𝑞ℓ,𝑚)) ≥ 1 − 𝛼 ′

𝑓
.

PROOF. When system 𝑖 and constraint ℓ with specific threshold 𝑞ℓ,𝑚 are considered separately, the [Feasibility
Check] steps in ZAKR either conclude a feasibility decision or eliminate threshold 𝑞ℓ,𝑚 for further consideration
(when system 𝑖 is declared feasible with respect to a threshold vector and all preferred threshold vectors do not
involve threshold value 𝑞ℓ,𝑚 on constraint ℓ). We see that when a feasibility decision is concluded, the [Feasibility
Check] steps in ZAKR are essentially the same as for the statistically-valid feasibility check procedure F in [1]
for a single system and a single constraint with one threshold value with confidence level 1 − 𝛼 ′

𝑓
. The result now

follows from the special case of Theorem 1 in [1] with 𝑘 = 1. □

We use the same notation for 𝑖 ∈ Γ as in Section 4 as follows.

A∗
1 (𝑖) =

{
system 𝑖 is declared infeasible to q(1) , . . . , q(min{𝜃 ∗,𝑑 })

}
;

A∗
2 (𝑖) =

{
system 𝑖 is declared infeasible to q(1) , . . . , q(𝜃

∗−1) if 1 < 𝜃 ∗ ≤ 𝑑

}
;

B∗
1 =

{
system [𝑏] is declared feasible to q(𝜃

∗) if 𝜃 ∗ ≤ 𝑑

}
.

LEMMA A.2. Under Assumption 1, for a particular system 𝑖, the [Feasibility Check] steps in ZAKR ensure

Pr
(
A∗

1 (𝑖)
)
≥ 1 − min{𝑠, 𝑑}𝛼 ′

𝑓
, if 𝑖 ∈ 𝑆𝑢 ;

Pr
(
A∗

2 (𝑖)
)
≥ 1 − min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
, if 𝑖 ∈ 𝑆𝑑 ∪ 𝑆𝑎′ and 1 < 𝜃 ∗ ≤ 𝑑 ;

Pr
(
B∗

1
)
≥ 1 − 𝑠𝛼 ′

𝑓
, if 𝜃 ∗ ≤ 𝑑.

PROOF. First, consider 𝑖 ∈ 𝑆𝑢 . We discuss the following two cases depending on whether 𝜃 ∗ ≤ 𝑑 or 𝜃 ∗ = 𝑑 + 1.
When 𝜃 ∗ ≤ 𝑑, system 𝑖 must be unacceptable to q(1) , . . . , q(𝜃

∗) because it is unacceptable to q(𝜃
∗) , not in 𝑆𝑎,

and there are no desirable systems with respect to q(1) , . . . , q(𝜃
∗−1) . As system 𝑖 is unacceptable with respect to

q(1) , . . . , q(𝜃
∗) , then for each 𝜅 = 1, . . . , 𝜃 ∗, there exist at least one constraint ℓ𝜅 such that 𝑦𝑖ℓ𝜅 ≥ 𝑞

(𝜅)
ℓ𝜅

+ 𝜖ℓ𝜅 . Then we
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Algorithm A.1 Procedure ZAKR

[Setup:] Select the overall nominal confidence level 1 − 𝛼 and choose 0 < 𝛼𝑓 , 𝛼𝑐 < 1 such that (1 − 𝛼𝑓 ) (1 − 𝛼𝑐 ) = 1 − 𝛼 . Choose tolerance
levels 𝜖1, . . . , 𝜖𝑠 , indifference-zone parameter 𝛿 , threshold vectors {q(1) , q(2) , . . . , q(𝑑 ) }, and associated index vectors {𝑰 (1) , 𝑰 (2) , . . . , 𝑰 (𝑑 ) }.
Set 𝑀 = Γ and 𝑍𝑖,ℓ,𝑚 = 2 for all 𝑖 ∈ 𝑀, ℓ = 1, . . . , 𝑠, and 𝑚 = 1, . . . , 𝑑ℓ . Set 𝐹 = ∅ and 𝜃 = 𝑑 . Set 𝜂𝑓 such that 𝑔 (𝜂𝑓 ) = 𝛼′

𝑓
, where

0 < 𝛼′
𝑓
< 1/𝑠 is set as a solution to(

1 − min{𝑠,𝑑 }𝛼′
𝑓

)𝑘−1
× (1 − 𝑠𝛼′

𝑓
) = 1 − 𝛼𝑓 , if systems are simulated independently;

and set as
𝛼′
𝑓
= 𝛼𝑓 /[ (𝑘 − 1) min{𝑠,𝑑 } + 𝑠 ] , if systems are simulated under CRN.

Add any constraint ℓ , where ℓ = 1, . . . , 𝑠, with increasing preference to set IP.
[Initialization for Phase I:]
for each system 𝑖 ∈ 𝑀 do
• Obtain 𝑛0 observations 𝑌𝑖ℓ1, 𝑌𝑖ℓ2, . . . , 𝑌𝑖ℓ𝑛0 for ℓ = 1, 2, . . . , 𝑠.
• Compute 𝑌𝑖ℓ (𝑛0) and 𝑆2

𝑌𝑖ℓ
(𝑛0) .

• Set 𝑟𝑖 = 𝑛0,ON𝑖 = {1, 2, . . . , 𝑠 }, and ON𝑖ℓ = {1, . . . , 𝑑ℓ } for ℓ = 1, 2, . . . , 𝑠.
end for
[Feasibility Check:]
for each system 𝑖 ∈ 𝑀 do

for ℓ ∈ ON𝑖 do
for𝑚 ∈ ON𝑖ℓ do,

If 𝑌𝑖ℓ (𝑟𝑖 ) + 𝑅 (𝑟𝑖 ;𝜖ℓ , 𝜂𝑓 , 𝑆
2
𝑌𝑖ℓ

(𝑛0))/𝑟𝑖 ≤ 𝑞ℓ,𝑚 , set 𝑍𝑖,ℓ,𝑚 = 1 and ON𝑖ℓ = ON𝑖ℓ \ {𝑚}.
If 𝑌𝑖ℓ (𝑟𝑖 ) − 𝑅 (𝑟𝑖 ;𝜖ℓ , 𝜂𝑓 , 𝑆

2
𝑌𝑖ℓ

(𝑛0))/𝑟𝑖 ≥ 𝑞ℓ,𝑚 , set 𝑍𝑖,ℓ,𝑚 = 0 and ON𝑖ℓ = ON𝑖ℓ \ {𝑚}.
end for
If ON𝑖ℓ = ∅, set ON𝑖 = ON𝑖 \ {ℓ }.

end for
If ∃ minimum 𝜅 ≤ 𝜃 s.t.

∏𝑠
ℓ=1 𝑍𝑖,ℓ,𝐼

(𝜅 )
ℓ

= 1, and either 𝜅 < 𝜃 or 𝑖 ∉ 𝐹 , then

• If 𝜅 < 𝜃 , then set 𝐹 = ∅, 𝜃 = 𝜅, and for all 𝑗 ∈ 𝑀 delete 𝑞ℓ,𝑚 from ON𝑗ℓ if ℓ ∈ IP and 𝑚 > 𝐼
(𝜃 )
ℓ (if ℓ ∉ IP, then 𝑞ℓ,𝑚 can be removed

from ON𝑗ℓ if 𝐼 (𝜃
′)

ℓ ≠𝑚 for all 𝜃 ′ ≤ 𝜅), and set ON𝑗 = ON𝑗 \ {ℓ } if ON𝑗ℓ = ∅.
• Add system 𝑖 to 𝐹 .

If
∏𝑠

ℓ=1 𝑍𝑖,ℓ,𝐼
(𝜃 )
ℓ

= 0 or 1 and either 𝜃 = 1 or
∏𝑠

ℓ=1 𝑍𝑖,ℓ,𝐼
(𝜅 )
ℓ

= 0 for all 𝜅 = 1, . . . , 𝜃 − 1, then remove system 𝑖 from 𝑀 .

end for
[Stopping Condition for Phase I]:
If 𝑀 ≠ ∅, then for each system 𝑖 ∈ 𝑀 , set 𝑟𝑖 = 𝑟𝑖 + 1, take one additional observation 𝑌𝑖ℓ𝑟𝑖 , and update 𝑌𝑖ℓ (𝑟𝑖 ) for ℓ ∈ ON𝑖 , then go to
[Feasibility Check]. Else, check the following conditions.
• If |𝐹 | = 0, stop and conclude no feasible systems;
• If |𝐹 | = 1, stop and return the system in 𝐹 as the best; or
• If |𝐹 | > 1, go to [Initialization for Phase II].
[Initialization for Phase II:] Let 𝜂𝑐 be a solution to 𝑔 (𝜂𝑐 ) = 𝛼′

𝑐 , where

𝛼′
𝑐 =

{
1 − (1 − 𝛼𝑐 )1/(𝑘−1) , if systems are simulated independently;
𝛼𝑐/(𝑘 − 1), if systems are simulated under CRN.

Let 𝑀 = 𝐹 be the set of systems still in contention. For each system 𝑖 ∈ 𝑀 , perform an entirely new simulation and obtain 𝑋𝑖1, . . . , 𝑋𝑖𝑛0
independent of any 𝑌𝑗ℓ𝑛 generated in Phase I. Compute 𝑋𝑖 (𝑛0) and 𝑆2

𝑋𝑖 𝑗
(𝑛0) for 𝑖, 𝑗 ∈ 𝑀 and 𝑖 ≠ 𝑗 . Set 𝑟 = 𝑛0 and go to [Comparison].

[Comparison:] For 𝑖, 𝑗 ∈ 𝑀 s.t. 𝑖 ≠ 𝑗 and
𝑟𝑋𝑖 (𝑟 ) > 𝑟𝑋 𝑗 (𝑟 ) + 𝑅 (𝑟 ;𝛿, 𝜂𝑐 , 𝑆2

𝑋𝑖 𝑗
(𝑛0)),

eliminate 𝑗 from 𝑀 .
[Stopping Condition for Phase II:] If |𝑀 | = 1, then stop and select the system in 𝑀 as the best. Otherwise, for each system 𝑖 ∈ 𝑀 , take
one additional observation 𝑋𝑖,𝑟+1 independent of any 𝑌𝑗ℓ𝑛 generated in Phase I and compute 𝑋𝑖 (𝑟 + 1) . Then, set 𝑟 = 𝑟 + 1 and go to
[Comparison].
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have

Pr
(
A∗

1 (𝑖)
)
≥ Pr

(
∩𝜃 ∗
𝜅=1CD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ 1 −

𝜃 ∗∑︁
𝜅=1

Pr
(
ICD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ 1 − 𝑑𝛼 ′

𝑓
, (2)

where we use ICD𝑖ℓ (𝑞ℓ,𝑚) to denote the event of incorrect decision of system 𝑖 with respect to constraint ℓ and
threshold 𝑞ℓ,𝑚 . The first inequality holds because declaring system 𝑖 infeasible to constraint ℓ𝜅 is sufficient to
declare system 𝑖 infeasible to threshold vector q(𝜅) and it is not possible to declare a system feasible with respect
to a threshold vector without completing the comparison with all thresholds in that vector. The second inequality
holds due to the Bonferroni inequality, and the last inequality holds due to Lemma A.1 and the fact of 𝜃 ∗ ≤ 𝑑 .

Observe that since there are only 𝑠 constraints, the set 𝐿 = {ℓ1, . . . , ℓ𝜃 ∗ } can have at most 𝑠 distinct values. For
ℓ ∈ 𝐿, let 𝐼𝑖ℓ denote the largest threshold index on constraint ℓ that system 𝑖 is unacceptable to, i.e.,

𝐼𝑖ℓ = max
1≤𝑚≤𝑑ℓ

{
𝑚 : 𝑦𝑖ℓ ≥ 𝑞ℓ,𝑚 + 𝜖ℓ

}
.

Thus, we know that 𝑞ℓ,1 < 𝑞ℓ,2 < · · · < 𝑞ℓ,𝐼𝑖ℓ ≤ 𝑦𝑖ℓ − 𝜖ℓ on constraint ℓ . Due to the discussion in [22], we know that
CD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ ) ⊆ · · · ⊆ CD𝑖ℓ (𝑞ℓ,2) ⊆ CD𝑖ℓ (𝑞ℓ,1). Then CD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ ) ⊆ CD𝑖ℓ (𝑞 (𝜅)

ℓ
) for 𝜅 = 1, . . . , 𝜃 ∗ with ℓ𝜅 = ℓ . Thus,

we also have

Pr
(
A∗

1 (𝑖)
)
≥ Pr

(
∩𝜃 ∗
𝜅=1CD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ Pr

(
∩ℓ∈𝐿CD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ )

)
≥ 1 −

∑︁
ℓ∈𝐿

Pr
(
ICD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ )

)
≥ 1 − |𝐿 |𝛼 ′

𝑓
≥ 1 − 𝑠𝛼 ′

𝑓
, (3)

where the third inequality is due to the Bonferroni inequality and the forth inequality is due to Lemma A.1. By
comparing Equations (2) and (3), we conclude that Pr

(
A∗

1 (𝑖)
)
≥ 1 − min{𝑠, 𝑑}𝛼 ′

𝑓
.

When 𝜃 ∗ = 𝑑 + 1, a similar argument yields

Pr
(
A∗

1 (𝑖)
)
≥ Pr

(
∩𝑑
𝜅=1CD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ 1 −

𝑑∑︁
𝜅=1

Pr
(
ICD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ 1 − 𝑑𝛼 ′

𝑓
,

and, defining 𝐿 = {ℓ1, . . . , ℓ𝑑 },

Pr
(
A∗

1 (𝑖)
)
≥ Pr

(
∩𝑑
𝜅=1CD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ Pr

(
∩ℓ∈𝐿CD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ )

)
≥ 1 −

∑︁
ℓ∈𝐿

Pr
(
ICD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ )

)
≥ 1 − |𝐿 |𝛼 ′

𝑓
≥ 1 − 𝑠𝛼 ′

𝑓
.

Therefore, Pr
(
A∗

1 (𝑖)
)
≥ 1 − min{𝑠, 𝑑}𝛼 ′

𝑓
.

Now, consider 𝑖 ∈ 𝑆𝑑 ∪ 𝑆𝑎′ with 1 < 𝜃 ∗ ≤ 𝑑. As system 𝑖 is not in 𝑆𝑎 and there are no desirable systems
with respect to q(1) , . . . , q(𝜃

∗−1) , system 𝑖 must be unacceptable with respect to q1, . . . , q(𝜃
∗−1) . Then for each

𝜅 = 1, . . . , 𝜃 ∗ − 1, there exist at least one constraint ℓ𝜅 such that 𝑦𝑖ℓ𝜅 ≥ 𝑞
(𝜅)
ℓ𝜅

+ 𝜖ℓ𝜅 . Due to a similar argument as for
𝑖 ∈ 𝑆𝑢 , we have

Pr
(
A∗

2 (𝑖)
)
≥ Pr

(
∩𝜃 ∗−1
𝜅=1 CD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ 1 −

𝜃 ∗−1∑︁
𝜅=1

Pr
(
ICD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ 1 − (𝑑 − 1)𝛼 ′

𝑓
.

Based on a similar definition 𝐿 = {ℓ1, . . . , ℓ𝜃 ∗−1} and the discussion above, we have

Pr
(
A∗

2 (𝑖)
)
≥ Pr

(
∩𝜃 ∗−1
𝜅=1 CD𝑖ℓ𝜅 (𝑞

(𝜅)
ℓ𝜅

)
)
≥ Pr

(
∩ℓ∈𝐿CD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ )

)
≥ 1 −

∑︁
ℓ∈𝐿

Pr
(
ICD𝑖ℓ (𝑞ℓ,𝐼𝑖ℓ )

)
≥ 1 − |𝐿 |𝛼 ′

𝑓
≥ 1 − 𝑠𝛼 ′

𝑓
.
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Therefore, we have Pr
(
A∗

2 (𝑖)
)
≥ 1 − min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
.

Finally, for [𝑏], when 𝜃 ∗ ≤ 𝑑 , we have

Pr
(
B∗

1
)
= Pr

(
∩𝑠
ℓ=1CD𝑖ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
≥ 1 −

𝑠∑︁
ℓ=1

Pr
(
ICD𝑖ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
≥ 1 − 𝑠𝛼 ′

𝑓
,

where the last inequality is due to Lemma A.1. □

For Lemma A.2, one may notice that 𝑑 > 𝑠 holds in most cases, and therefore Pr
(
A∗

1 (1)
)
≥ 1 − 𝑠𝛼 ′

𝑓
and

Pr
(
A∗

2 (1)
)
≥ 1 − 𝑠𝛼 ′

𝑓
hold in most cases. Note that when 𝑑 ≥ 𝑠 and the systems are simulated independently, the

implementation parameter 𝛼 ′
𝑓

has a closed-form solution as

𝛼 ′
𝑓
=

1
𝑠

[
1 − (1 − 𝛼 𝑓 )1/𝑘

]
.

When 𝑑 < 𝑠, one may need to find 𝛼 ′
𝑓

by numerically solving (1 − 𝑑𝛼 ′
𝑓
)𝑘−1 × (1 − 𝑠𝛼 ′

𝑓
) = 1 − 𝛼 𝑓 . As we always

have (1 − 𝑑 × 0)𝑘−1 × (1 − 𝑠 × 0) − (1 − 𝛼 𝑓 ) = 𝛼 𝑓 > 0 and (1 − 𝑑 × 1
𝑠
)𝑘−1 × (1 − 𝑠 × 1

𝑠
) − (1 − 𝛼 𝑓 ) = 𝛼 𝑓 − 1 < 0,

there will always be a solution 𝛼 ′
𝑓

satisfying 0 < 𝛼 ′
𝑓
< 1

𝑠
.

We then use CS𝑖 to denote the correct selection between system 𝑖 ∈ 𝑆𝑎′ ∪𝑆𝑑 and the best system [𝑏] and introduce
the following lemma.

LEMMA A.3. Under Assumption 1, given 𝑖 such that 𝑥𝑖 ≤ 𝑥 [𝑏 ] − 𝛿 , the [Comparison] steps for system 𝑖 and
[𝑏] in ZAKR that run to completion ensure

Pr (CS𝑖 ) ≥ 1 − 𝛼 ′
𝑐 .

PROOF. When only system 𝑖 and [𝑏] are considered, the [Comparison] steps in ZAKR are the same as in
the statistically-valid selection-of-the-best procedure provided in [12] when two systems are considered with
confidence level 1 − 𝛼 ′

𝑐 . Therefore, the result follows from the special case of Theorem 1 of [12] with 𝑘 = 2. □

We are now ready to give the main theorem about the statistical validity of ZAKR and provide the detailed
proof of Theorem A.4.

THEOREM A.4. Under Assumptions 1 and 2, the ZAKR procedure guarantees

Pr{CS} ≥ 1 − 𝛼.

PROOF. We consider two cases, namely when 𝜃 ∗ ≤ 𝑑 and 𝜃 ∗ = 𝑑 + 1.
Case 1: 𝜃 ∗ ≤ 𝑑 .
Note that any systems in (𝑆𝑎′ ∪ 𝑆𝑑 ) should not be declared feasible with respect to a more preferred threshold
vector q(1) , . . . , q(𝜃

∗−1) as they could be selected as the best system otherwise. More specifically, we consider the
following four events.

A∗
1 =

{
all systems in 𝑆𝑢 are eliminated by infeasibility = ∩𝑖∈𝑆𝑢A∗

1 (𝑖)
}

;

A∗
2 =

{
all systems in (𝑆𝑎′ ∪ 𝑆𝑑 ) are declared infeasible to thresholds q(1) , . . . , q(𝜃

∗−1)
}

=
{
∩𝑖∈𝑆𝑎′∪𝑆𝑑A

∗
2 (𝑖) when 𝜃 ∗ > 1

}
;

B∗
2 = { system [𝑏] would be selected as the best system among the systems in 𝑆𝑎′ ∪ 𝑆𝑑 } ;

B∗ =
{

system [𝑏] is declared feasible with respect to q(𝜃
∗) and is selected as the best system among

the surviving systems from Phase I
}
.
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Notice that B∗
1 ∩ B∗

2 ⊆ B∗ and A∗
2 is not defined when 𝜃 ∗ = 1. This means

Pr{CS} ≥
{

Pr(A∗
1 ∩ B∗), if 𝜃 ∗ = 1;

Pr(A∗
1 ∩ A∗

2 ∩ B∗), if 𝜃 ∗ > 1.

We see that Pr{CS} achieves its lower bound when 𝜃 ∗ > 1 (because the bounds on Pr(A∗
1), Pr(B∗

1 ), and Pr(B∗
2 )

below do not depend on the value of 𝜃 ∗), and thus we focus on the case when 𝜃 ∗ > 1. We also see that A∗
1,A∗

2 , and
B∗

1 are independent events when systems are simulated independently but are dependent events when systems are
simulated under CRN. As we discard observations from Phase I and completely restart for Phase II, and as B∗

2
involves making the correct selection from all systems in 𝑆𝑎′ ∪ 𝑆𝑑 (not only the ones surviving from Phase I), B∗

2 is
independent from A∗

1,A∗
2 , and B∗

1 . We have

Pr{CS} ≥ Pr(A∗
1 ∩ A∗

2 ∩ B∗) ≥ Pr(A∗
1 ∩ A∗

2 ∩ B∗
1 ∩ B∗

2 )

=

{
Pr(A∗

1) × Pr(A∗
2) × Pr(B∗

1 ) × Pr(B∗
2 ), if systems are simulated independently;[

Pr(A∗
1) + Pr(A∗

2) + Pr(B∗
1 ) − 2

]
× Pr(B∗

2 ), if systems are simulated under CRN.

We discuss the cases depending on whether systems are simulated independently or under CRN. When systems
are simulated independently, by Lemma A.2, we have

Pr(A∗
1) ≥ (1 − min{𝑠, 𝑑}𝛼 ′

𝑓
) 𝑗𝑢 ;

Pr(A∗
2) ≥ (1 − min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
) 𝑗𝑎′+𝑗𝑑 = (1 − min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
)𝑘−𝑗𝑎−𝑗𝑢−1;

Pr(B∗
1 ) ≥ 1 − 𝑠𝛼 ′

𝑓
.

Let 𝑁𝑖 𝑗 denote the number of observations taken for system 𝑖 before a comparison decision is made between
systems 𝑖 and 𝑗 , and let 𝑁𝑖 denote the maximum number of observations that system 𝑖 takes within Phase II. That is

𝑁𝑖 𝑗 =

⌈
2𝑐𝜂𝑐 (𝑛0 − 1)𝑆2

𝑋𝑖 𝑗
(𝑛0)

𝛿2

⌉
, and 𝑁𝑖 = max

𝑗≠𝑖
𝑁𝑖 𝑗 .

Then we have
Pr(B∗

2 ) ≥ Pr
(
∩𝑖∈𝑆𝑎′∪𝑆𝑑 CS𝑖

)
= E

[
Pr

{
∩𝑖∈(𝑆𝑑∪𝑆𝑎′ )CS𝑖

���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆
2
𝑋𝑖 [𝑏 ]

(𝑛0)
}]

= E


∏
𝑖∈(𝑆𝑑∪𝑆𝑎′ )

Pr
{
CS𝑖

���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆
2
𝑋𝑖 [𝑏 ]

(𝑛0)
}

≥
∏

𝑖∈(𝑆𝑑∪𝑆𝑎′ )
E
[
Pr

{
CS𝑖

���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆
2
𝑋𝑖 [𝑏 ]

(𝑛0)
}]

=
∏

𝑖∈(𝑆𝑑∪𝑆𝑎′ )
Pr {CS𝑖 } ≥

∏
𝑖∈(𝑆𝑑∪𝑆𝑎′ )

(1 − 𝛼 ′
𝑐 )

= (1 − 𝛼 ′
𝑐 ) 𝑗𝑑+𝑗𝑎′ ≥ (1 − 𝛼 ′

𝑐 )𝑘−𝑗𝑢−𝑗𝑎−1,

(4)

where the second inequality holds due to Lemma 2.4 in [20] and the third inequality follows from Lemma A.3.
Thus, we know that

Pr{CS} ≥ (1 − min{𝑠, 𝑑}𝛼 ′
𝑓
) 𝑗𝑢 × (1 − min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
)𝑘−𝑗𝑎−𝑗𝑢−1 × (1 − 𝑠𝛼 ′

𝑓
) × (1 − 𝛼 ′

𝑐 )𝑘−𝑗𝑢−𝑗𝑎−1

≥ (1 − min{𝑠, 𝑑}𝛼 ′
𝑓
) 𝑗𝑢 × (1 − min{𝑠, 𝑑}𝛼 ′

𝑓
)𝑘−𝑗𝑎−𝑗𝑢−1 × (1 − 𝑠𝛼 ′

𝑓
) × (1 − 𝛼 ′

𝑐 )𝑘−𝑗𝑢−𝑗𝑎−1
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= (1 − min{𝑠, 𝑑}𝛼 ′
𝑓
)𝑘−𝑗𝑎−1 × (1 − 𝑠𝛼 ′

𝑓
) × (1 − 𝛼 ′

𝑐 )𝑘−𝑗𝑢−𝑗𝑎−1

≥ (1 − min{𝑠, 𝑑}𝛼 ′
𝑓
)𝑘−1 × (1 − 𝑠𝛼 ′

𝑓
) × (1 − 𝛼 ′

𝑐 )𝑘−1

= (1 − 𝛼 𝑓 ) ×
[
(1 − 𝛼𝑐 )1/(𝑘−1)

]𝑘−1
= (1 − 𝛼 𝑓 ) (1 − 𝛼𝑐 ) = 1 − 𝛼,

where the third inequality holds since the lower bound of (1 − min{𝑠, 𝑑}𝛼 ′
𝑓
)𝑘−𝑗𝑎−1 is achieved when 𝑗𝑎 = 0 when

0 < 𝛼 ′
𝑓
< 1/𝑠, and the lower bound of (1 − 𝛼 ′

𝑐 )𝑘−𝑗𝑢−𝑗𝑎−1 is achieved when 𝑗𝑎 = 𝑗𝑢 = 0 for 0 ≤ 1 − 𝛼 ′
𝑐 < 1.

When systems are simulated under CRN, by Lemmas A.2, A.3, and the Bonferroni inequality, we have

Pr(A∗
1) ≥ 1 − 𝑗𝑢 min{𝑠, 𝑑}𝛼 ′

𝑓
;

Pr(A∗
2) ≥ 1 − ( 𝑗𝑎′ + 𝑗𝑑 ) min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
= 1 − (𝑘 − 𝑗𝑎 − 𝑗𝑢 − 1) min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
;

Pr(B∗
1 ) ≥ 1 − 𝑠𝛼 ′

𝑓
;

Pr(B∗
2 ) ≥ Pr

(
∩𝑖∈𝑆𝑎′∪𝑆𝑑 CS𝑖

)
≥ 1 −

∑︁
𝑖∈(𝑆𝑑∪𝑆𝑎′ )

Pr(ICS𝑖 ) ≥ 1 − ( 𝑗𝑑 + 𝑗𝑎′)𝛼 ′
𝑐

= 1 − (𝑘 − 𝑗𝑢 − 𝑗𝑎 − 1)𝛼 ′
𝑐 ,

where ICS𝑖 denotes the incorrect selection event between system 𝑖 ∈ 𝑆𝑑 ∪ 𝑆𝑎′ and system [𝑏]. Thus,

Pr{CS} ≥
[
1 − 𝑗𝑢 min{𝑠, 𝑑}𝛼 ′

𝑓
+ 1 − (𝑘 − 𝑗𝑎 − 𝑗𝑢 − 1) min{𝑠, 𝑑 − 1}𝛼 ′

𝑓
+ 1 − 𝑠𝛼 ′

𝑓
− 2

]
×
[
1 − (𝑘 − 𝑗𝑢 − 𝑗𝑎 − 1)𝛼 ′

𝑐

]
≥

[
1 − 𝑗𝑢 min{𝑠, 𝑑}𝛼 ′

𝑓
+ 1 − (𝑘 − 𝑗𝑎 − 𝑗𝑢 − 1) min{𝑠, 𝑑}𝛼 ′

𝑓
+ 1 − 𝑠𝛼 ′

𝑓
− 2

]
×
[
1 − (𝑘 − 𝑗𝑢 − 𝑗𝑎 − 1)𝛼 ′

𝑐

]
=

[
1 − (𝑘 − 𝑗𝑎 − 1) min{𝑠, 𝑑}𝛼 ′

𝑓
− 𝑠𝛼 ′

𝑓

]
×
[
1 − (𝑘 − 𝑗𝑢 − 𝑗𝑎 − 1)𝛼 ′

𝑐

]
≥

[
1 − (𝑘 − 1) min{𝑠, 𝑑}𝛼 ′

𝑓
− 𝑠𝛼 ′

𝑓

]
× [1 − (𝑘 − 1)𝛼 ′

𝑐 ] = (1 − 𝛼 𝑓 ) (1 − 𝛼𝑐 ) = 1 − 𝛼,

where the third inequality holds since 𝛼 ′
𝑓
, 𝛼 ′

𝑐 > 0, and hence the lower bound of (𝑘 − 𝑗𝑎 − 1) min{𝑠, 𝑑}𝛼 ′
𝑓

is achieved
when 𝑗𝑎 = 0, and the lower bound of 1 − (𝑘 − 𝑗𝑢 − 𝑗𝑎 − 1)𝛼 ′

𝑐 is achieved when 𝑗𝑎 = 𝑗𝑢 = 0.
Case 2: 𝜃 ∗ = 𝑑 + 1.
If 𝜃 ∗ = 𝑑 + 1, there are no desirable systems for any threshold vector. Based on the definition of CS, CS is to either
declare all systems are infeasible or to select an acceptable system with respect to any of the threshold vectors
q(1) , . . . , q(𝑑) . Therefore, CS is ensured by correctly concluding feasibility decisions for all system 𝑖 ∈ 𝑆𝑢 . Then
Pr (CS) ≥ Pr(A∗

1) and Lemma A.2 and the Bonferroni inequality yield

Pr{CS} ≥
{
(1 − min{𝑠, 𝑑}𝛼 ′

𝑓
) 𝑗𝑢 . if systems are simulated independently,

1 − 𝑗𝑢 min{𝑠, 𝑑}𝛼 ′
𝑓
, if systems are simulated under CRN

≥
{
(1 − min{𝑠, 𝑑}𝛼 ′

𝑓
)𝑘 , if systems are simulated independently,

1 − 𝑘 min{𝑠, 𝑑}𝛼 ′
𝑓
, if systems are simulated under CRN,

where the last inequality is due to the fact that 1 ≤ 𝑗𝑢 ≤ 𝑘 and 0 < min{𝑠, 𝑑}𝛼 ′
𝑓
< 1. When systems are simulated

independently, we have

Pr{CS} ≥ (1 − min{𝑠, 𝑑}𝛼 ′
𝑓
)𝑘 ≥ (1 − min{𝑠, 𝑑}𝛼 ′

𝑓
)𝑘−1 · (1 − 𝑠𝛼 ′

𝑓
)

= 1 − 𝛼 𝑓 > 1 − 𝛼.
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When systems are simulated under CRN, we have

Pr{CS} ≥ 1 − 𝑘 min{𝑠, 𝑑}𝛼 ′
𝑓
≥ 1 − (𝑘 − 1) min{𝑠, 𝑑}𝛼 ′

𝑓
− 𝑠𝛼 ′

𝑓

= 1 − 𝛼 𝑓 > 1 − 𝛼. □

B IMPLEMENTATION PARAMETERS FORZAKR ANDZAK
In this section, we provide detailed discussion about how we set the implementation parameters for the two
proposed sequentially-running procedures ZAKR and ZAK in Appendices B.1 and B.2, respectively.

B.1 Implementation Parameters forZAKR

The choices of 𝛼 𝑓 and 𝛼𝑐 affect the performance of the ZAKR procedure. If Phase I is difficult (e.g., the secondary
performance measures of many systems are close to some of the threshold values in threshold vectors q(1) , . . . , q(𝜃

∗) ),
one may want to choose a larger value for 𝛼 𝑓 than 𝛼𝑐 to improve the efficiency. On the other hand, if Phase I is
relatively easy compared with Phase II, then it is more efficient to assign a larger value of 𝛼𝑐 than 𝛼 𝑓 . If the decision
maker has knowledge on the relative difficulty of the feasibility checks and the comparison, she may first decide
the choice of 𝑒1 = 𝛼 𝑓 /𝛼𝑐 , the ratio of the nominal error of Phase I to Phase II. Then we have

(1 − 𝑒1 × 𝛼𝑐 ) (1 − 𝛼𝑐 ) = 𝑒1𝛼
2
𝑐 − (𝑒1 + 1)𝛼𝑐 + 1 = 1 − 𝛼.

Since the left-hand side equals 1 when 𝛼𝑐 = 0 and 0 when 𝛼𝑐 = min{1, 1/𝑒1}, there must be exactly one root 𝛼𝑐

with 𝛼𝑐 , 𝑒1 × 𝛼𝑐 ∈ (0, 1). We have 𝛼𝑐 =
𝑒1+1−

√
(𝑒1+1)2−4𝑒1𝛼

2𝑒1
(the other root does not satisfy 𝛼𝑐 < min{1, 1/𝑒1}) and

𝛼 𝑓 = 𝑒1 ×𝛼𝑐 . However, the decision maker usually does not have such information about the mean configurations of
the primary and secondary performance measures of the systems. One possibility is to select 𝛼 𝑓 = 𝛼𝑐 = 1−(1−𝛼)1/2.

If 𝑠 ≤ 𝑑, the formulas for selecting 𝛼 ′
𝑓

and 𝛼 ′
𝑐 in Algorithm A.1 suggest one may first choose 𝑒2 = 𝑠𝛼 ′

𝑓
/𝛼 ′

𝑐 (the
ratio of the nominal error for feasibility checks across all the constraints for one system and the nominal error for
the comparison between best system [𝑏] and one inferior system) and further find 𝛼 ′

𝑓
and 𝛼 ′

𝑐 depending on the
value of 𝑒2. Similarly, one may consider 𝑒2 = 𝑑𝛼 ′

𝑓
/𝛼 ′

𝑐 if 𝑑 < 𝑠.
We start with the case when 𝑠 ≤ 𝑑 . When systems are simulated independently, we know that

1 − 𝛼 = (1 − 𝛼 𝑓 ) (1 − 𝛼𝑐 ) = (1 − 𝑠𝛼 ′
𝑓
)𝑘 × (1 − 𝛼 ′

𝑐 )𝑘−1 = (1 − 𝑒2𝛼
′
𝑐 )𝑘 (1 − 𝛼 ′

𝑐 )𝑘−1,

where one can numerically solve for 𝛼 ′
𝑐 and 𝛼 ′

𝑓
= 𝑒2𝛼

′
𝑐/𝑠. Since the right-hand side equals 1 when 𝛼 ′

𝑐 = 0
and 0 when 𝛼 ′

𝑐 = min{1, 1/𝑒2}, there must be one exactly root 𝛼 ′
𝑐 with 𝛼 ′

𝑐 , 𝑒2 × 𝛼 ′
𝑐 ∈ (0, 1) and it follows that

0 < 𝛼 ′
𝑓
= 𝑒2𝛼

′
𝑐/𝑠 < 1/𝑠 as desired. When systems are simulated under CRN, we know that

1 − 𝛼 = (1 − 𝛼 𝑓 ) (1 − 𝛼𝑐 ) = (1 − 𝑘𝑠𝛼 ′
𝑓
) × (1 − (𝑘 − 1)𝛼 ′

𝑐 ) = (1 − 𝑘𝑒2𝛼
′
𝑐 ) × (1 − (𝑘 − 1)𝛼 ′

𝑐 )
= 𝑒2𝑘 (𝑘 − 1) (𝛼 ′

𝑐 )2 − (𝑒2𝑘 + 𝑘 − 1)𝛼 ′
𝑐 + 1.

Since the right-hand side equals 1 when 𝛼 ′
𝑐 = 0 and 0 when 𝛼 ′

𝑐 = min{ 1
𝑘−1 ,

1
𝑒2𝑘

}, there must be exactly one root 𝛼 ′
𝑐

with (𝑘 − 1)𝛼 ′
𝑐 , 𝑒2𝑘𝛼

′
𝑐 ∈ (0, 1). Thus, we have 𝛼 ′

𝑐 =
𝑒2𝑘+𝑘−1−

√
(𝑒2𝑘+𝑘−1)2−4𝑒2𝑘 (𝑘−1)𝛼
2𝑒2𝑘 (𝑘−1) (the other root does not satisfy

𝛼 ′
𝑐 < min{ 1

𝑘−1 ,
1

𝑒2𝑘
}).

We then discuss the case when 𝑑 < 𝑠. We set 𝑒2 = 𝑑𝛼 ′
𝑓
/𝛼 ′

𝑐 and find 𝛼 ′
𝑐 by solving{

(1 − 𝑒2𝛼
′
𝑐 )𝑘−1 × (1 − 𝑒2

𝑠
𝑑
𝛼 ′
𝑐 ) × (1 − 𝛼 ′

𝑐 )𝑘−1 = 1 − 𝛼, if systems are simulated independently;(
1 − 𝑒2

(
𝑘 − 1 + 𝑠

𝑑

)
𝛼 ′
𝑐

)
×
[
1 − (𝑘 − 1)𝛼 ′

𝑐

]
= 1 − 𝛼, if systems are simulated under CRN.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: February 2023.



Selection of the Best in the Presence of Subjective Stochastic Constraints • 33

The former can be solved numerically. As the left-hand side equals 1 when 𝛼 ′
𝑐 = 0 and 0 when 𝛼 ′

𝑐 = min{ 𝑑
𝑠𝑒2

, 1},
there must be a root 𝛼 ′

𝑐 with 𝑒2𝛼
′
𝑐 ,

𝑠𝑒2
𝑑
𝛼 ′
𝑐 , 𝛼

′
𝑐 ∈ (0, 1) and it follows that 0 < 𝛼 ′

𝑓
= 𝑒2𝛼

′
𝑐/𝑑 < 1/𝑠 as desired. For the

latter, since the left-hand side equals 1 when 𝛼 ′
𝑐 = 0 and 0 when 𝛼 ′

𝑐 = min{ 1
𝑘−1 ,

1
𝑒2 (𝑘−1+ 𝑠

𝑑
) }, there must be one root 𝛼 ′

𝑐

with (𝑘 − 1)𝛼 ′
𝑐 , 𝑒2 (𝑘 − 1 + 2

𝑑
)𝛼 ′

𝑐 ∈ (0, 1). Therefore, we have 𝛼 ′
𝑐 =

𝑒2 (𝑘−1+ 𝑠
𝑑
)+𝑘−1−

√
[𝑒2 (𝑘−1+ 𝑠

𝑑
)+𝑘−1]2−4𝑒2 (𝑘−1+ 𝑠

𝑑
) (𝑘−1)𝛼

2𝑒2 (𝑘−1+ 𝑠
𝑑
) (𝑘−1)

as the other root does not satisfy 𝛼 ′
𝑐 < min{ 1

𝑘−1 ,
1

𝑒2 (𝑘−1+ 2
𝑑
) }.

In reality, the decision maker usually does not have detailed information regarding the mean performance of
each system. One recommendation is to balance the error between the feasibility checks and the comparison. For
example, if one has a single threshold vector and wishes to allocate the same amount of error for feasibility checks
for all constraints of one system as for the comparison of one system with the best system [𝑏], then 𝑒1 = 1 and
𝑒2 = 1 are appropriate choices. On the other hand, if one wants to allocate the same error for feasibility check for
one constraint of one system as for comparison of one system with the best system [𝑏], then 𝑒1 = 𝑠 and 𝑒2 = 𝑠 are
appropriate. Note that this agrees with the discussion from [8] who consider a single threshold vector under the
MIM configuration and test the formulation using 𝑒1 = 1. They recommend to set the ratio of the difficulty between
feasibility checks and comparison to 1 on the grounds that this choice is robust to differing numbers of constraints,
numbers of feasible systems, and variance configurations. When multiple threshold vectors are considered, we
need to ensure more correct events during the feasibility checks (see the detailed analysis in the proof of statistical
validity of ZAKR in this section and further analysis in Section 4.2). Therefore, larger values of 𝑒1 and 𝑒2 may
be more appropriate than in the single threshold vector case. More specifically, most of our experimental results
(Section 6) consider the 𝑒2 formulation with 𝑒2 = 2 (see the analysis in Section 6.2).

B.2 Implementation Parameters forZAK
To find the values of 𝛼 ′

𝑓
and 𝛼 ′

𝑐 , after choosing the value of 𝑒2, one needs to solve{
𝛼 = 1 − (1 − min{𝑠, 𝑑}𝛼 ′

𝑓
)𝑘−1 × (1 − 𝑠𝛼 ′

𝑓
) + 1 − (1 − 𝛼 ′

𝑐 ) |𝐹 |−1, if systems are simulated independently;
𝛼 = [(𝑘 − 1) min{𝑠, 𝑑} + 𝑠]𝛼 ′

𝑓
+ (|𝐹 | − 1)𝛼 ′

𝑐 , if systems are simulated under CRN.
(5)

As the decision maker does not have the information on the number of surviving systems for Phase II (i.e., the
value of |𝐹 |) prior to the execution of Algorithm 1, she may first find 𝛼 ′

𝑓
by assuming that the number of surviving

systems for Phase II is 𝑘 (i.e., by assuming |𝐹 | = 𝑘).
When 𝑠 ≤ 𝑑 , one may find 𝛼 ′

𝑐 by solving{
𝛼 = 1 − (1 − 𝑒2𝛼

′
𝑐 )𝑘 + 1 − (1 − 𝛼 ′

𝑐 )𝑘−1, if systems are simulated independently;
𝛼 = 𝑘𝑒2𝛼

′
𝑐 + (𝑘 − 1)𝛼 ′

𝑐 . if systems are simulated under CRN,

When systems are simulated independently, the right-hand side equals 0 when 𝛼 ′
𝑐 = 0. When 𝛼 ′

𝑐 = min{1, 1
𝑒2
},

one of the terms 1 − (1 − 𝑒2𝛼
′
𝑐 )𝑘 , 1 − (1 − 𝛼 ′

𝑐 )𝑘−1 on the right-hand side equals 1 and the other is positive, and
hence the right-hand side is greater than 1. Thus, there must be a root 𝛼 ′

𝑐 with 𝛼 ′
𝑐 , 𝑒2𝛼

′
𝑐 ∈ (0, 1) and it follows

that 0 < 𝛼 ′
𝑓
= 𝑒2𝛼𝑐/𝑠 < 1/𝑠 as desired. When systems are simulated under CRN, we find 𝛼 ′

𝑐 = 𝛼
𝑘𝑒2+𝑘−1 . The

corresponding 𝛼 ′
𝑓

can be found as 𝛼 ′
𝑓
= 𝑒2𝛼

′
𝑐/𝑠.

When 𝑑 < 𝑠, one may find 𝛼 ′
𝑐 by solving{

𝛼 = 1 − (1 − 𝑒2𝛼
′
𝑐 )𝑘−1 × (1 − 𝑠

𝑑
𝑒2𝛼

′
𝑐 ) + 1 − (1 − 𝛼 ′

𝑐 )𝑘−1, if systems are simulated independently;
𝛼 =

(𝑘−1)𝑑+𝑠
𝑑

𝑒2𝛼
′
𝑐 + (𝑘 − 1)𝛼 ′

𝑐 , if systems are simulated under CRN.
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When systems are simulated independently, the right-hand side equals 0 when 𝛼 ′
𝑐 = 0. When 𝛼 ′

𝑐 = min{ 𝑑
𝑠𝑒2

, 1}, the
right-hand side is greater than 1 (because one of the terms (1−𝑒2𝛼

′
𝑐 )𝑘−1×(1− 𝑠

𝑑
𝑒2𝛼

′
𝑐 ), 1−(1−𝛼 ′

𝑐 )𝑘−1 equals 1 and the
other one is positive). Thus, there must be a root 𝛼 ′

𝑐 with 𝑒2𝛼
′
𝑐 ,

𝑠𝑒2
𝑑
𝛼 ′
𝑐 , 𝛼

′
𝑐 ∈ (0, 1) and hence 0 < 𝛼 ′

𝑓
= 𝑒2𝛼

′
𝑐/𝑑 < 1/𝑠

as desired. When systems are simulated under CRN, we find 𝛼 ′
𝑐 = 𝛼

(𝑘−1)𝑑+𝑠
𝑑

𝑒2+𝑘−1
, The corresponding 𝛼 ′

𝑓
can be

found as 𝛼 ′
𝑓
= 𝑒2𝛼

′
𝑐/𝑑 .

After the completion of Phase I, with the information on the number of surviving systems |𝐹 |, we may solve for
an updated value for 𝛼 ′

𝑐 , namely 𝛼 ′′
𝑐 , by solving Equation (5) where 𝛼 ′

𝑓
and 𝛼 ′

𝑐 are replaced by the value of 𝛼 ′
𝑓

we
already computed (i.e., 𝛼 ′

𝑓
= 𝑒2𝛼

′
𝑐/min{𝑠, 𝑑}) and 𝛼 ′′

𝑐 , respectively.

C STATISTICAL VALIDITY OFZAK+
In this section, we provide the proof of Theorem 4.3.

PROOF. We consider two cases, namely when 𝜃 ∗ ≤ 𝑑 and 𝜃 ∗ = 𝑑 + 1.
Case 1: 𝜃 ∗ ≤ 𝑑 .
We consider the events A∗

1,A∗
2,B∗

1 , and B∗
2 defined in Section A. Notice that A∗

2 ∩ B∗
2 is the event that all systems

in 𝑆𝑎′ ∪ 𝑆𝑑 are declared infeasible to threshold vectors q(1) , . . . , q(𝜃
∗−1) and are eliminated by comparison with

system [𝑏], i.e., A∗
2 ∩ B∗

2 = ∩𝑖∈𝑆𝑑∪𝑆𝑎′A∗
2 (𝑖) ∩ CS𝑖 . Similarly, A∗

1 = ∩𝑖∈𝑆𝑢A∗
1 (𝑖).

We discuss the cases depending on whether systems are simulated independently or under CRN. When systems
are simulated independently, as ZAK+ performs Phases I and II simultaneously, events A∗

2,B∗
1 , and B∗

2 are
dependent whereas A∗

1 is independent of A∗
2 ∩ B∗

1 ∩ B∗
2 . We then have

Pr{CS} ≥ Pr
{
A∗

1 ∩ A∗
2 ∩ B∗

1 ∩ B∗
2
}

= Pr
(
A∗

1
)
× Pr

(
A∗

2 ∩ B∗
1 ∩ B∗

2
)

≥ Pr
(
A∗

1
)
×
[
Pr

(
A∗

2 ∩ B∗
2
)
+ Pr

(
B∗

1
)
− 1

]
.

By Lemma 4.1, we have

Pr
(
A∗

1
)
≥

(
1 − min{𝑠, 𝑑}𝛽𝑓

) 𝑗𝑢 ;
Pr

(
B∗

1
)
≥ 1 − 𝑠𝛽𝑓 .

We use the same notation 𝑁𝑖 𝑗 from the proof of Theorem A.4 and have

Pr
(
A∗

2 ∩ B∗
2
)
= Pr

(
∩𝑖∈(𝑆𝑑∪𝑆𝑎′ )

(
A∗

2 (𝑖) ∩ CS𝑖
) )

= E
[
Pr

{
∩𝑖∈(𝑆𝑑∪𝑆𝑎′ )

(
A∗

2 (𝑖) ∩ CS𝑖
) ���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆

2
𝑋𝑖 [𝑏 ]

(𝑛0)
}]

= E


∏
𝑖∈(𝑆𝑑∪𝑆𝑎′ )

Pr
{
A∗

2 (𝑖) ∩ CS𝑖
���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆

2
𝑋𝑖 [𝑏 ]

(𝑛0)
}

≥
∏

𝑖∈(𝑆𝑑∪𝑆𝑎′ )
E
[
Pr

{
A∗

2 (𝑖) ∩ CS𝑖
���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆

2
𝑋𝑖 [𝑏 ]

(𝑛0)
}]

≥
∏

𝑖∈(𝑆𝑑∪𝑆𝑎′ )

[
1 − E

[
Pr

{(
A∗

2 (𝑖)
)𝑐 ���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆𝑋 2

𝑖 [𝑏 ]
(𝑛0)

}]
− E

[
Pr

{
ICS𝑖

���𝑋 [𝑏 ]1, . . . , 𝑋 [𝑏 ],𝑁 [𝑏 ] , 𝑆𝑋 2
𝑖 [𝑏 ]

(𝑛0)
} ]]
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=
∏

𝑖∈(𝑆𝑑∪𝑆𝑎′ )

[
1 − Pr

{(
A∗

2 (𝑖)
)𝑐} − Pr {ICS𝑖 }

]
≥

∏
𝑖∈(𝑆𝑑∪𝑆𝑎′ )

(
1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐

)
=
(
1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐

) 𝑗𝑑+𝑗𝑎′
=
(
1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐

)𝑘−𝑗𝑎−𝑗𝑢−1
,

where we use 𝐴𝑐 to denote the complement event of 𝐴. The first inequality is from Lemma 2.4 of [20], the second
inequality holds due to the Bonferroni inequality, and the last inequality is from Lemmas 4.1 and 4.2.

Thus, we know that

Pr{CS} ≥
(
1 − min{𝑠, 𝑑}𝛽𝑓

) 𝑗𝑢 ×
[ (

1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐
)𝑘−𝑗𝑎−𝑗𝑢−1 +

(
1 − 𝑠𝛽𝑓

)
− 1

]
≥

(
1 − min{𝑠, 𝑑}𝛽𝑓

) 𝑗𝑢 ×
[ (

1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐
)𝑘−𝑗𝑢−1 − 𝑠𝛽𝑓

]
,

where the second inequality holds since the lower bound of (1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 )𝑘−𝑗𝑎−𝑗𝑢−1 is achieved when
𝑗𝑎 = 0 for 0 < 1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 < 1. As 0 ≤ 𝑗𝑢 ≤ 𝑘 − 1 (because 𝜃 ∗ ≤ 𝑑), we know that

Pr{CS} ≥ min
0≤ 𝑗≤𝑘−1

{(
1 − min{𝑠, 𝑑}𝛽𝑓

) 𝑗 × [ (
1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐

)𝑘−𝑗−1 − 𝑠𝛽𝑓

]}
= 1 − 𝛼.

When systems are simulated under CRN, events A∗
1,A∗

2,B∗
1 , and B∗

2 are all dependent. Thus, we have

Pr {CS} ≥ Pr
{
A∗

1 ∩ A∗
2 ∩ B∗

1 ∩ B∗
2
}
≥ Pr

(
A∗

1
)
+ Pr

(
A∗

2 ∩ B∗
2
)
+ Pr

(
B∗

1
)
− 2.

By Lemmas 4.1 and 4.2, and the Bonferroni inequality, we have

Pr
(
A∗

1
)
≥ 1 − 𝑗𝑢 min{𝑠, 𝑑}𝛽𝑓 ;

Pr
(
B∗

1
)
≥ 1 − 𝑠𝛽𝑓 ;

Pr
(
A∗

2 ∩ B∗
2
)
= Pr

(
∩𝑖∈(𝑆𝑑∪𝑆𝑎′ )

(
A∗

2 (𝑖) ∩ CS𝑖
) )

≥ 1 −
∑︁

𝑖∈(𝑆𝑑∪𝑆𝑎′ )

[
Pr

(
A∗

2 (𝑖)
)𝑐 + Pr(ICS𝑖 )

]
≥ 1 −

∑︁
𝑖∈(𝑆𝑑∪𝑆𝑎′ )

[
min{𝑠, 𝑑 − 1}𝛽𝑓 + 𝛽𝑐

]
= 1 − ( 𝑗𝑑 + 𝑗𝑎′)

[
min{𝑠, 𝑑 − 1}𝛽𝑓 + 𝛽𝑐

]
= 1 − (𝑘 − 𝑗𝑎 − 𝑗𝑢 − 1)

[
min{𝑠, 𝑑 − 1}𝛽𝑓 + 𝛽𝑐

]
,

where the first inequality holds due to the Bonferroni inequality and the second inequality holds by Lemmas 4.1
and 4.2.

Thus, we know that

Pr{CS} ≥ 1 − 𝑗𝑢 min{𝑠, 𝑑}𝛽𝑓 +
{
1 − (𝑘 − 𝑗𝑎 − 𝑗𝑢 − 1)

[
min{𝑠, 𝑑 − 1}𝛽𝑓 + 𝛽𝑐

]}
+ 1 − 𝑠𝛽𝑓 − 2

≥ 1 − 𝑗𝑢 min{𝑠, 𝑑}𝛽𝑓 − (𝑘 − 𝑗𝑢 − 1)
[
min{𝑠, 𝑑 − 1}𝛽𝑓 + 𝛽𝑐

]
− 𝑠𝛽𝑓 ,

= 1 − [ 𝑗𝑢 min{𝑠, 𝑑} + (𝑘 − 𝑗𝑢 − 1) min{𝑠, 𝑑 − 1} + 𝑠] 𝛽𝑓 − (𝑘 − 𝑗𝑢 − 1)𝛽𝑐 ,

where the second inequality holds since the lower bound of 1− (𝑘 − 𝑗𝑎 − 𝑗𝑢 − 1)
[
min{𝑠, 𝑑 − 1}𝛽𝑓 + 𝛽𝑐

]
is achieved

when 𝑗𝑎 = 0. As 0 ≤ 𝑗𝑢 ≤ 𝑘 − 1, we know that

Pr{CS} ≥ min
0≤ 𝑗≤𝑘−1

{
1 − [ 𝑗 min{𝑠, 𝑑} + (𝑘 − 𝑗 − 1) min{𝑠, 𝑑 − 1} + 𝑠] 𝛽𝑓 − (𝑘 − 𝑗 − 1)𝛽𝑐

}
= 1 − 𝛼.
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Case 2: 𝜃 ∗ = 𝑑 + 1.
If 𝜃 ∗ = 𝑑+1, there are no desirable systems for any threshold vector. Similar to the discussion in the proof of Theorem
A.4, CS is ensured by correctly concluding feasibility decisions for all systems 𝑖 ∈ 𝑆𝑢 . Then Pr{CS} ≥ Pr(A∗

1) and
Lemma 4.1 and the Bonferroni inequality yield

Pr{CS} ≥
{
(1 − min{𝑠, 𝑑}𝛽𝑓 ) 𝑗𝑢 , if systems are simulated independently,
1 − 𝑗𝑢 min{𝑠, 𝑑}𝛽𝑓 , if systems are simulated under CRN.

≥
{
(1 − min{𝑠, 𝑑}𝛽𝑓 )𝑘 , if systems are simulated independently,
1 − 𝑘 min{𝑠, 𝑑}𝛽𝑓 , if systems are simulated under CRN,

where the last inequality is due to the fact that 1 ≤ 𝑗𝑢 ≤ 𝑘 and 0 < min{𝑠, 𝑑}𝛽𝑓 < 1. When systems are simulated
independently, we have

Pr {CS} ≥
(
1 − min{𝑠, 𝑑}𝛽𝑓

)𝑘 ≥
(
1 − min{𝑠, 𝑑}𝛽𝑓

)𝑘−1 (1 − 𝑠𝛽𝑓
)

=
(
1 − min{𝑠, 𝑑}𝛽𝑓

)𝑘−1
[ (

1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐
)𝑘−(𝑘−1)−1 − 𝑠𝛽𝑓

]
≥ min

0≤ 𝑗≤𝑘−1

{(
1 − min{𝑠, 𝑑}𝛽𝑓

) 𝑗 [ (1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐
)𝑘−𝑗−1 − 𝑠𝛽𝑓

]}
= 1 − 𝛼,

where the second inequality holds since min{𝑠, 𝑑} ≤ 𝑠 and 0 < min{𝑠, 𝑑}𝛽𝑓 < 1 and the first equality holds since
(1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 )0 = 1.

When systems are simulated under CRN, we have

Pr{CS} ≥ 1 − 𝑘 min{𝑠, 𝑑}𝛽𝑓 ≥ 1 − [(𝑘 − 1) min{𝑠, 𝑑} + 𝑠]𝛽𝑓
= 1 − [(𝑘 − 1) min{𝑠, 𝑑} + (𝑘 − (𝑘 − 1) − 1) min{𝑠, 𝑑 − 1} + 𝑠] 𝛽𝑓 − (𝑘 − (𝑘 − 1) − 1)𝛽𝑐
≥ min

0≤ 𝑗≤𝑘−1

[
1 − [ 𝑗 min{𝑠, 𝑑} + (𝑘 − 𝑗 − 1) min{𝑠, 𝑑 − 1} + 𝑠] 𝛽𝑓 − (𝑘 − 𝑗 − 1)𝛽𝑐

]
= 1 − 𝛼. □

D IMPLEMENTATION PARAMETERS FORZAK+
We start by considering the case when 𝑠 < 𝑑 , and the systems are simulated independently. In this case, we need to
find 𝛽𝑓 and 𝛽𝑐 such that

min
0≤ 𝑗≤𝑘−1

{
(1 − min{𝑠, 𝑑}𝛽𝑓 ) 𝑗 ×

[
(1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 )𝑘−𝑗−1 − 𝑠𝛽𝑓

]}
= 1 − 𝛼.

Let 𝛽 = 𝑠𝛽𝑓 = 𝑒𝛽𝑐 . Then we have

Pr{CS} ≥ min
0≤ 𝑗≤𝑘−1

{
(1 − 𝛽) 𝑗 ×

[
(1 − (1 + 1/𝑒)𝛽)𝑘−𝑗−1 − 𝛽

]}
.

Let 𝑓 ( 𝑗) be a function of 𝑗 such that 𝑓 ( 𝑗) = (1 − 𝛽) 𝑗 ×
[
(1 − (1 + 1/𝑒)𝛽)𝑘−𝑗−1 − 𝛽

]
. We need to find the lower

bound of 𝑓 ( 𝑗) given that 0 ≤ 𝑗 ≤ 𝑘 − 1. Treating 𝑗 as a continuous variable, the first derivative of 𝑓 ( 𝑗) is

𝜕

𝜕𝑗
𝑓 ( 𝑗) = (1 − 𝛽) 𝑗 log(1 − 𝛽)

[
(1 − (1 + 1/𝑒)𝛽)𝑘−𝑗−1 − 𝛽

]
− (1 − 𝛽) 𝑗 (1 − (1 + 1/𝑒)𝛽)𝑘−𝑗−1 log (1 − (1 + 1/𝑒)𝛽)

= (1 − 𝛽) 𝑗
{
[log(1 − 𝛽) − log(1 − (1 + 1/𝑒)𝛽)] (1 − (1 + 1/𝑒)𝛽)𝑘−𝑗−1 − 𝛽 log(1 − 𝛽)

}
> 0,
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where the last inequality holds since log(1 − 𝛽) > log(1 − (1 + 1/𝑒)𝛽) and log(1 − 𝛽) < 0. Therefore, we know that
𝑓 ( 𝑗) is increasing. Given that 0 ≤ 𝑗 ≤ 𝑘 − 1, 𝑓 ( 𝑗) achieves its minimum when 𝑗 = 0. Hence, to find 𝛽𝑓 and 𝛽𝑐 , we
solve

(1 − 𝛽)0 ×
[
(1 − (1 + 1/𝑒)𝛽)𝑘−0−1 − 𝛽

]
= (1 − (1 + 1/𝑒)𝛽)𝑘−1 − 𝛽 = 1 − 𝛼.

The resulting 𝛽 is the common value of 𝑒𝛽𝑐 and 𝑠𝛽𝑓 . We see that (1− (1+ 1/𝑒)𝛽)𝑘−1 − 𝛽 equals 1 when 𝛽 = 0 and is
negative when 𝛽 = 𝑒

𝑒+1 . Thus, there exists a solution 𝛽 with 0 < 𝛽 < 𝑒
𝑒+1 that solves (1− (1 + 1/𝑒)𝛽)𝑘−1 − 𝛽 = 1−𝛼 ,

which can be found numerically. It follows that 0 < 𝛽𝑓 = 𝛽/𝑠 < 𝑒
𝑒+1 × 1

𝑠
< 1

𝑠
, 0 < 𝛽𝑐 =

𝛽

𝑒
< 1

𝑒+1 < 1, and
0 < 1 − (1 + 1

𝑒
)𝛽 ≤ 1 − min{𝑠, 𝑑 − 1} 𝛽

𝑠
− 𝛽

𝑒
= 1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 < 1 as desired.

We then consider the case when 𝑠 < 𝑑 and the systems are simulated under CRN. We need to find 𝛽𝑓 and 𝛽𝑐 such
that

min
0≤ 𝑗≤𝑘−1

{
1 − [ 𝑗 min{𝑠, 𝑑} + (𝑘 − 𝑗 − 1) min{𝑠, 𝑑 − 1} + 𝑠] 𝛽𝑓 − (𝑘 − 𝑗 − 1)𝛽𝑐

}
= 1 − 𝛼.

By setting 𝛽 = 𝑠𝛽𝑓 = 𝑒𝛽𝑐 , we have

Pr {CS} ≥ min
0≤ 𝑗≤𝑘−1

{
1 −

(
𝑘 + 𝑘 − 𝑗 − 1

𝑒

)
𝛽

}
= 1 −

(
𝑘 + 𝑘 − 1

𝑒

)
𝛽,

and the value of 𝑠𝛽𝑓 and 𝑒𝛽𝑐 can be found as 𝑠𝛽𝑓 = 𝑒𝛽𝑐 = 𝛼/[𝑘 + (𝑘 − 1)/𝑒].
When 𝑠 ≥ 𝑑 , by setting 𝛽 = 𝑑𝛽𝑓 = 𝑒𝛽𝑐 , we need to find 𝛽 such that
1 − 𝛼 = min0≤ 𝑗≤𝑘−1

{
(1 − 𝛽) 𝑗 ×

[(
1 − 𝑑−1

𝑑
𝛽 − 1

𝑒
𝛽

)𝑘−𝑗−1
− 𝑠

𝑑
𝛽

]}
, if systems are simulated independently;

1 − 𝛼 = min0≤ 𝑗≤𝑘−1

{
1 −

[
𝑗 + (𝑑−1) (𝑘−𝑗−1)+𝑠

𝑑
+ 𝑘−𝑗−1

𝑒

]
𝛽

}
, if systems are simulated under CRN.

When systems are simulated independently, for a fixed 𝑗 such that 0 ≤ 𝑗 ≤ 𝑘 − 1, (1 − 𝛽) 𝑗 × [(1 − 𝑑−1
𝑑
𝛽 −

1
𝑒
𝛽)𝑘−𝑗−1 − 𝑠

𝑑
𝛽] equals 1 when 𝛽 = 0 and is non-positive when 𝛽 = min{ 1

1− 1
𝑑
+ 1
𝑒

, 𝑑
𝑠
} (because (1 − 𝛽) 𝑗 ≥ 0

and (1 − 𝑑−1
𝑑
𝛽 − 1

𝑒
𝛽)𝑘−𝑗−1 = 0 when 𝛽 = 1

1− 1
𝑑
+ 1
𝑒

and 𝑠
𝑑
𝛽 = 1 when 𝛽 = 𝑑

𝑠
). Thus, there must be a solution

𝛽 𝑗 with (1 − 1
𝑑
+ 1

𝑒
)𝛽 𝑗 , 𝑠𝑑 𝛽 𝑗 ∈ (0, 1). We then let 𝑓𝑗 (𝛽) be a function of 𝛽 with a fixed 𝑗 such that 𝑓𝑗 (𝛽) =

(1 − 𝛽) 𝑗 × [(1 − 𝑑−1
𝑑
𝛽 − 1

𝑒
𝛽)𝑘−𝑗−1 − 𝑠

𝑑
𝛽]. The first derivative of 𝑓𝑗 (𝛽) is

𝜕

𝜕𝛽
𝑓𝑗 (𝛽) = − 𝑗 (1 − 𝛽) 𝑗−1

[(
1 −

(
1 − 1

𝑑
+ 1
𝑒

)
𝛽

)𝑘−𝑗−1
− 𝑠

𝑑
𝛽

]
− (1 − 𝛽) 𝑗

[
(𝑘 − 𝑗 − 1)

(
1 − 1

𝑑
+ 1
𝑒

) (
1 −

(
1 − 1

𝑑
+ 1
𝑒

)
𝛽

)𝑘−𝑗−2
+ 𝑠

𝑑

]
< 0,

where the inequality holds for 0 < 𝛽 < min{ 1
1− 1

𝑑
+ 1
𝑒

, 𝑑
𝑠
} such that 𝑓𝑗 (𝛽) > 0. Given that 𝜕

𝜕𝛽
𝑓𝑗 (𝛽) < 0 when

𝑓𝑗 (𝛽) > 0, we know that the solution 𝛽 𝑗 is unique. We set 𝑗0 ∈ arg min0≤ 𝑗≤𝑘−1 𝛽 𝑗 . As 𝜕
𝜕𝛽

𝑓𝑗 (𝛽) < 0, which
implies that 𝑓𝑗 (𝛽) is a decreasing function in terms of 𝛽 for a particular 𝑗 , we know that 𝑓𝑗 (𝛽 𝑗0 ) ≥ 1 − 𝛼 for
all 1 ≤ 𝑗 ≤ 𝑘 − 1 and 𝑓𝑗0 (𝛽 𝑗0 ) = 1 − 𝛼 . We find 𝛽 as 𝛽 = 𝛽 𝑗0 , which is the common value of 𝑒𝛽𝑐 and 𝑑𝛽𝑓 .
It follows that 0 < 𝛽𝑓 = 1

𝑑
𝛽 < min{ 1

𝑑+𝑑
𝑒
−1
, 1
𝑠
} ≤ 1

𝑠
, 0 < 𝛽𝑐 = 1

𝑒
𝛽 < min{ 1

𝑒− 𝑒
𝑑
+1 ,

1
𝑒
} ≤ 1

1+𝑒 (1− 1
𝑑
) ≤ 1, and

0 < 1 − ( 𝑑−1
𝑑

+ 1
𝑒
)𝛽 = 1 − min{𝑠, 𝑑 − 1} 𝛽

𝑑
− 𝛽

𝑒
= 1 − min{𝑠, 𝑑 − 1}𝛽𝑓 − 𝛽𝑐 < 1 as desired.
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When systems are simulated under CRN, we find 𝛽 such that

1 − 𝛼 = min
0≤ 𝑗≤𝑘−1

{
1 −

[
𝑗 + (𝑑 − 1) (𝑘 − 𝑗 − 1) + 𝑠

𝑑
+ 𝑘 − 𝑗 − 1

𝑒

]
𝛽

}
= min

0≤ 𝑗≤𝑘−1

{
1 −

[(
1
𝑑
− 1
𝑒

)
𝑗 +

(
1 − 1

𝑑
+ 1
𝑒

)
(𝑘 − 1) + 𝑠

𝑑

]
𝛽

}
=

{
1 −

[ (
1 − 1

𝑑
+ 1

𝑒

)
(𝑘 − 1) + 𝑠

𝑑

]
𝛽, if 𝑑 ≥ 𝑒,

1 −
(
𝑘 − 1 + 𝑠

𝑑

)
𝛽, if 𝑑 < 𝑒,

and the value of 𝑑𝛽𝑓 and 𝑒𝛽𝑐 can be found as

𝛽 =

{
𝛼/

[ (
1 − 1

𝑑
+ 1

𝑒

)
(𝑘 − 1) + 𝑠

𝑑

]
, if 𝑑 ≥ 𝑒,

𝛼/
(
𝑘 − 1 + 𝑠

𝑑

)
, if 𝑑 < 𝑒.

We also see that 0 < 𝛽𝑓 = 1
𝑑
𝛽 ≤ 𝛼

𝑑 (𝑘−1+ 𝑠
𝑑
) < 1

𝑠
and 0 < 𝛽𝑐 =

1
𝑒
𝛽 ≤ 𝛽 < 1 if 𝑒 ≥ 1 and 0 < 𝛽𝑐 =

1
𝑒
𝛽 ≤ 𝛼

𝑒 ( 𝑘−1
𝑒

) < 1 if

𝑒 < 1 ≤ 𝑑 , as desired.

E ALGORITHMS THAT CONSTRUCT THE THREE EXAMPLE PREFERENCE ORDERS
In this section, we include the algorithms used to generate the three example preference orders discussed in Section
5. More specifically, Algorithms A.2 – A.4 show the algorithm that generates ranked constraints, equally important
constraints, and the total violation with ranked constraints formulation, respectively.

Note that the ranked constraints and the total violation with ranked constraints formulation require the rankings
among constraints, without loss of generality, Algorithm A.2 and A.4 assume that the constraints are ranked from
constraint 1 to constraint 𝑠.

Algorithm A.2 Constructing threshold vectors for ranked constraints

Input 𝑞ℓ,𝑚 for all ℓ = 1, . . . , 𝑠 and 𝑚 = 1, . . . , 𝑑ℓ . Let Q be an empty list of threshold vectors and let threshold
be a vector of length 𝑠.
for𝑚1 = 1, . . . , 𝑑1 do

for𝑚2 = 1, . . . , 𝑑2 do
. . .

for𝑚𝑠 = 1, . . . , 𝑑𝑠 do
for ℓ = 1, . . . , 𝑠 do

Set threshold[ℓ] = 𝑞ℓ,𝑚ℓ
.

end for
Add threshold to Q.

end for
. . .

end for
end for
return Q
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Algorithm A.3 Constructing threshold vectors for equally important constraints

Input 𝑞ℓ,𝑚 for all ℓ = 1, . . . , 𝑠 and 𝑚 = 1, . . . , 𝑑ℓ . Let Q be an empty list of threshold vectors and let threshold
be a vector of length 𝑠. Set 𝐿 = maxℓ=1,...,𝑠 𝑑ℓ .
for𝑚 = 1, . . . , 𝐿 do

for ℓ = 1, . . . , 𝑠 do
if𝑚 ≤ 𝑑ℓ then

Set threshold[ℓ] = 𝑞ℓ,𝑚 .
else

Set threshold[ℓ] = 𝑞ℓ,𝑑ℓ .
end if

end for
Add threshold to Q.

end for
return Q

Algorithm A.4 Constructing threshold vectors for total violation with ranked constraints

Input 𝑞ℓ,𝑚 for all ℓ = 1, . . . , 𝑠 and 𝑚 = 1, . . . , 𝑑ℓ . Let Q be an empty list of threshold vectors and let threshold
be a vector of length 𝑠.
for 𝑣 = 0, . . . ,

∑𝑠
ℓ=1 (𝑑ℓ − 1) do

for 𝑣1 = 0, . . . , 𝑣 do
for 𝑣2 = 0, . . . , 𝑣 − 𝑣1 do

for 𝑣3 = 0, . . . , 𝑣 − (𝑣1 + 𝑣2) do
. . .

for 𝑣𝑠 = 𝑣 −∑𝑠−1
ℓ′=1 𝑣ℓ′ do

for ℓ = 1, . . . , 𝑠 do
Set threshold[ℓ] = 𝑞ℓ,𝑣ℓ+1.

end for
end for
. . .

end for
Add threshold to Q.

end for
end for

end for
return Q

F PROCEDURES RestartAK AND RestartHAK

In this section, we discuss the algorithms RestartAK and RestartHAK and their statistical validity. As RestartAK

is a special case of RestartHAK when the number of constraints in consideration is one, we omit the discussion on
the algorithm statement and the statistical validity of procedure RestartAK for the sake of space.

Procedure RestartHAK performs HAK, due to [8], for threshold vectors q(1) , q(2) , . . . , q(𝜃
∗) independently

when 1 ≤ 𝜃 ∗ ≤ 𝑑, and for threshold vectors q(1) , q(2) , . . . , q(𝑑) independently when 𝜃 ∗ = 𝑑 + 1. As discussed in
[8], HAK requires the user to choose a feasibility check procedure. In our experiments, we choose F I

B in [8] as
the feasibility check procedure. HAK also requires a user to input the ratio, denoted 𝛼1/𝛼2, of the error for the
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feasibility checks and the comparison. We set 𝛼1/𝛼2 = 1 as recommended in [8] and the initial sample size when
RestartHAK applies HAK with respect to each threshold vector as 𝑛0 = 20. Note that the results in this section
can be easily generalized to a different 𝛼1/𝛼2 ratio. A detailed description of RestartHAK is shown in Algorithm
A.5.

Algorithm A.5 Procedure RestartHAK

[Setup:] Select the overall nominal confidence level 1 − 𝛼 . Choose tolerance levels 𝜖1, . . . , 𝜖𝑠 , indifference-zone
parameter 𝛿 , and threshold vectors {q(1) , q(2) , . . . , q(𝑑) }. Choose the procedure F I

B as the feasibility check
procedure and set 𝛼 ′ = 1 − (1 − 𝛼)1/𝑑 .
for 𝜃 = 1, . . . , 𝑑 do

[Setup] for HAK: Same as in HAK except that 𝛼 is replaced by 𝛼 ′. Set 𝛼1 = 𝛼2 = 𝛼 ′/2.
[Initialization], [Feasibility Check], [Feasibility Stopping Rule], [Setup for Comparison],
[Comparison], and [Comparison Stopping Rule] are the same as in HAK.
[Stopping Condition]: If one system is found in [Comparison Stopping Rule], terminate
the algorithm and select the system as the best. If no system is found in [Feasibility Stopping Rule]
and 𝜃 = 𝑑 , declare no feasible system exists with respect to the given threshold vectors.

end for

As HAK is heuristic and RestartHAK essentially applies HAK for threshold vectors q(1) , q(2) , . . . , q(min{𝜃 ∗,𝑑 }) ,
we do not prove the statistical validity of RestartHAK . However, if we consider a variation of HAK, namely
HAKR (“restart"), with a slight modification in the [Setup] for HAK (as Phases I and II are independent in
HAKR) and two changes in the [Setup for Comparison], we are able to prove the statistical validity of procedure
RestartHAKR

that implements HAKR for threshold vectors q(1) , q(2) , . . . , q(min{𝜃 ∗,𝑑 }) independently:
• In [Setup] for HAK:

Set

𝛼1 = 𝛼2 =

{
1 − (1 − 𝛼 ′)𝑘/(𝑘+1) , if systems are simulated independently;
1
2

(
𝑘 + 1 −

√︁
(𝑘 + 1)2 − 4𝑘𝛼 ′

)
, if systems are simulated under CRN.

Note that 𝛼1 and 𝛼2 are well-defined when systems are simulated under CRN since (𝑘 + 1)2 − 4𝑘𝛼 ′ > 0
always holds. This is because 0 < 𝛼 ′ < 1 and thus (𝑘 + 1)2 − 4𝑘𝛼 ′ > (𝑘 + 1)2 − 4𝑘 = (𝑘 − 1)2 ≥ 0.

• In [Setup for Comparison] in HAK:
– Instead of using the observations of the primary performance measure 𝑋𝑖1, . . . , 𝑋𝑖𝑟𝑖 collected from the

[Feasibility Check] in HAK, we perform a completely new simulation and collect 𝑋𝑖1, . . . , 𝑋𝑖𝑛0 for
system 𝑖 ∈ 𝐹 , and compute 𝑋𝑖 (𝑛0) and 𝑆2

𝑋𝑖 𝑗
(𝑛0) for 𝑖, 𝑗 ∈ 𝐹 . Set 𝑟𝑖 = 𝑛0 for each system 𝑖 ∈ 𝐹 .

– Change 𝛽2 = 𝛼2/(|𝐹 | − 1) to 𝛽2 =

{
1 − (1 − 𝛼2)1/(𝑘−1) , if systems are simulated independently;
𝛼2/(𝑘 − 1), if systems are simulated under CRN.

Note that [8] use 𝐹 to denote the set of systems that are declared feasible with respect to q(𝜃
∗) in Phase I.

To prove the statistical validity of RestartHAKR
, we consider similar notation as in Section 2.2. Recall that we

use [𝑏] to denote the index of the best system among the desirable systems with respect to q(𝜃
∗) . We further let

CS(𝜃 ) be the correct selection event with respect to threshold vector q(𝜃 ) . Then if 𝜃 = 1, . . . ,min{𝜃 ∗, 𝑑},

CS(𝜃 ) =


{
declare no feasible system exists or select 𝑖 such that 𝑖 ∈ ∩𝑠

ℓ=1

(
𝐷ℓ

(
𝑞
(𝜃 )
ℓ

)
∪𝐴ℓ

(
𝑞
(𝜃 )
ℓ

))}
, if 𝜃 < 𝜃 ∗;{

select 𝑖 such that 𝑖 ∈ ∩𝑠
ℓ=1

(
𝐷ℓ

(
𝑞
(𝜃 )
ℓ

)
∪𝐴ℓ

(
𝑞
(𝜃 )
ℓ

))
and 𝑥𝑖 > 𝑥 [𝑏 ] − 𝛿

}
, if 𝜃 = 𝜃 ∗ .
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We let CSRestart be the correct selection event of RestartHAKR
. As RestartHAKR

iteratively applies HAKR for
threshold vectors q(1) , q(2) , . . . , q(𝜃

∗) when 1 ≤ 𝜃 ∗ ≤ 𝑑 and for threshold vectors q(1) , q(2) , . . . , q(𝑑) when 𝜃 ∗ = 𝑑 + 1,
we have ∩min{𝜃 ∗,𝑑 }

𝜃=1 CS(𝜃 ) ⊂ CSRestart.
Before we prove the statistical validity of RestartHAKR

, we first introduce the following notation:

𝑆
(𝜃 )
𝑎 = set of acceptable systems with respect to threshold vector q(𝜃 ) ;

𝑆
(𝜃 )
𝑢 = set of unacceptable systems with respect to threshold vector q(𝜃 ) .

Note that there do not exist desirable systems with respect to q(𝜃 ) when 𝜃 < 𝜃 ∗. We then let

𝑆
(𝜃 ∗)
𝑑

=

{
set of desirable systems with respect to q(𝜃

∗) among systems in Γ \ {[𝑏]}, if 𝜃 ∗ ≤ 𝑑 ;
∅, if 𝜃 ∗ = 𝑑 + 1,

and let CS(𝜃 ∗)
𝑖

be the correct selection event between system 𝑖 ∈ 𝑆
(𝜃 ∗)
𝑎 ∪ 𝑆

(𝜃 ∗)
𝑑

and the best system [𝑏].
We then present two lemmas that we use to prove the statistical validity of RestartHAKR

.

LEMMA F.1. Under Assumption 1, for system 𝑖 and constraint ℓ with threshold 𝑞ℓ , the [Feasibility Check] steps
in HAKR that run to completion ensure Pr(CD𝑖ℓ (𝑞ℓ )) ≥ 1 − 𝛽1.

LEMMA F.2. Under Assumption 1, given 𝑖 such that 𝑥𝑖 ≤ 𝑥 [𝑏 ] − 𝛿 , the [Comparison] steps for system 𝑖 and [𝑏]
in HAKR that run to completion ensure

Pr
(
CS(𝜃 ∗)

𝑖

)
≥ 1 − 𝛽2 .

The proofs of Lemmas F.1 and F.2 are essentially same as those of Lemmas A.1 and A.3 when 𝑐 = 1 (the case
considered by [8]) because 𝛼 ′

𝑓
(𝛼 ′

𝑐 ) from ZAKR and 𝛽1 (𝛽2) from HAKR both denote the nominal error of
feasibility check for one constraint of one system with a fixed threshold (comparison between an inferior system
and the best system [𝑏]). We prove the statistical validity of RestartHAKR

in the following theorem.

THEOREM F.3. Under Assumptions 1 and 2, the procedure RestartHAKR
guarantees

Pr{CSRestart} ≥ 1 − 𝛼.

PROOF. We consider two cases, namely when 𝜃 ∗ ≤ 𝑑 and 𝜃 ∗ = 𝑑 + 1.
Case 1: 𝜃 ∗ ≤ 𝑑 .
Recall from Section A that B∗

1 denotes the event that system [𝑏] is declared feasible to q(𝜃
∗) . Similar to B∗

2 and
A∗

1 in the proof of Theorem A.4, we define B̃∗
2 as the event that selects the best system [𝑏] among the systems in

𝑆
(𝜃 ∗)
𝑑

∪ 𝑆
(𝜃 ∗)
𝑎 and

A (𝜃 ) =
{

all systems in 𝑆
(𝜃 )
𝑢 are declared infeasible with respect to q(𝜃 ) , where 𝜃 = 1, . . . , 𝑑

}
.

Note that when 𝜃 < 𝜃 ∗, CS(𝜃 ) can be ensured by only guaranteeing A (𝜃 ) . When 𝜃 = 𝜃 ∗, CS(𝜃 ) ⊆ A (𝜃 ) ∩ B∗
1 ∩ B̃∗

2 .
Thus,

Pr
(
CS(𝜃 )

)
≥
{

Pr
(
A (𝜃 ) ∩ B∗

1 ∩ B̃∗
2

)
, if 𝜃 = 𝜃 ∗,

Pr
(
A (𝜃 ) ) , if 𝜃 < 𝜃 ∗ .

As CS(𝜃 ) achieves its lower bound when 𝜃 = 𝜃 ∗ (because otherwise there is no need to make correct comparison
decisions), we focus on this case. One may also notice that A (𝜃 ∗) and B∗

1 are independent if systems are simulated
independently and are dependent if systems are simulated under CRN. As we discard observations from Phase I
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and completely restart for Phase II in HAKR , and B̃∗
2 involves making the correct selection from all systems in

𝑆
(𝜃 ∗)
𝑎 ∪ 𝑆

(𝜃 ∗)
𝑑

, B̃∗
2 is independent from A (𝜃 ∗) and B∗

1 . Then, we have

Pr
(
CS(𝜃 ∗)

)
≥


Pr
(
A (𝜃 ∗) ) × Pr

(
B∗

1
)
× Pr

(
B̃∗

2

)
, if systems are simulated independently,[

Pr
(
A (𝜃 ∗) ) + Pr

(
B∗

1
)
− 1

]
× Pr

(
B̃∗

2

)
, if systems are simulated under CRN.

We let 𝑗 (𝜃 )𝑢 denote the number of unacceptable systems with respect to q(𝜃 ) , i.e., 𝑗 (𝜃 )𝑢 = |𝑆 (𝜃 )
𝑢 |. We then discuss the

cases depending on whether systems are simulated independently or under CRN.
When systems are simulated independently, by Lemma F.1 and the Bonferroni inequality, we have

Pr
(
A (𝜃 ∗)

)
≥ Pr

(
∩
𝑖∈𝑆 (𝜃∗ )

𝑢
∩𝑠
ℓ=1 CD𝑖ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
=

∏
𝑖∈𝑆 (𝜃∗ )

𝑢

Pr
(
∩𝑠
ℓ=1CD𝑖ℓ (𝑞 (𝜃 ∗)

ℓ
)
)

≥
∏

𝑖∈𝑆 (𝜃∗ )
𝑢

[
1 −

𝑠∑︁
ℓ=1

Pr
(
ICD𝑖ℓ (𝑞 (𝜃 ∗)

ℓ
)
)]

≥ (1 − 𝑠𝛽1) 𝑗
(𝜃∗ )
𝑢 ;

Pr
(
B∗

1
)
= Pr

(
∩𝑠
ℓ=1CD[𝑏 ]ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
≥ 1 −

𝑠∑︁
ℓ=1

Pr
(
ICD[𝑏 ]ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
≥ 1 − 𝑠𝛽1.

We use a similar approach as in Equation (4) from the proof of Theorem A.4 by replacing 𝑆𝑎′ and 𝑆𝑑 with 𝑆
(𝜃 ∗)
𝑎

and 𝑆
(𝜃 ∗)
𝑑

, respectively. We then have

Pr(B̃∗
2 ) ≥ (1 − 𝛽2)𝑘−𝑗

(𝜃∗ )
𝑢 −1.

Thus, we have

Pr
(
CS(𝜃 ∗)

)
≥ (1 − 𝑠𝛽1) 𝑗

(𝜃∗ )
𝑢 +1 × (1 − 𝛽2)𝑘−𝑗

(𝜃∗ )
𝑢 −1 .

To find a lower bound of the above expression, we need to either maximize 𝑗
(𝜃 ∗)
𝑢 if 1 − 𝑠𝛽1 ≤ 1 − 𝛽2 or minimize

𝑗
(𝜃 ∗)
𝑢 if 1 − 𝑠𝛽1 > 1 − 𝛽2. We also know that 0 ≤ 𝑗

(𝜃 ∗)
𝑢 ≤ 𝑘 − 1. When 1 − 𝑠𝛽1 ≤ 1 − 𝛽2, we have

(1 − 𝑠𝛽1) 𝑗
(𝜃∗ )
𝑢 +1 × (1 − 𝛽2)𝑘−𝑗

(𝜃∗ )
𝑢 −1 ≥ (1 − 𝑠𝛽1) (𝑘−1)+1 × (1 − 𝛽2)𝑘−(𝑘−1)−1

= (1 − 𝑠𝛽1)𝑘 = 1 − 𝛼1,

where the last equality holds since procedure HAK sets 𝛽1 = (1 − (1 − 𝛼1)1/𝑘 )/𝑠 when systems are independent.
When 1 − 𝑠𝛽1 > 1 − 𝛽2, we have

(1 − 𝑠𝛽1) 𝑗
(𝜃∗ )
𝑢 +1 × (1 − 𝛽2)𝑘−𝑗

(𝜃∗ )
𝑢 −1 ≥ (1 − 𝑠𝛽1)0+1 × (1 − 𝛽2)𝑘−0−1

= (1 − 𝑠𝛽1) × (1 − 𝛽2)𝑘−1

= (1 − 𝛼1)1/𝑘 × (1 − 𝛼2)
= (1 − 𝛼1) (𝑘+1)/𝑘 ,

where the second equality holds as HAK sets 𝛽1 = (1 − (1 − 𝛼1)1/𝑘 )/𝑠 and HAKR sets 𝛽2 = 1 − (1 − 𝛼2)1/(𝑘−1)

when systems are independent. Therefore, we have

Pr
(
CS(𝜃 ∗)

)
≥ min

[
1 − 𝛼1, (1 − 𝛼1) (𝑘+1)/𝑘

]
= (1 − 𝛼1) (𝑘+1)/𝑘
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=

[
1 − (1 − (1 − 𝛼 ′)𝑘/(𝑘+1) )

] (𝑘+1)/𝑘
= 1 − 𝛼 ′.

When systems are simulated under CRN, by Lemma F.1 and the Bonferroni inequality, we have

Pr
(
A (𝜃 ∗)

)
≥ Pr

(
∩
𝑖∈𝑆 (𝜃∗ )

𝑢
∩𝑠
ℓ=1 CD𝑖ℓ (𝑞 (𝜃 ∗)

ℓ
)
)
≥ 1 −

∑︁
𝑖∈𝑆 (𝜃∗ )

𝑢

𝑠∑︁
ℓ=1

CD𝑖ℓ (𝑞 (𝜃 ∗)
ℓ

) ≥ 1 − 𝑗
(𝜃 ∗)
𝑢 𝑠𝛽1;

Pr
(
B∗

1
)
≥ 1 − 𝑠𝛽1;

Pr
(
B̃∗

2

)
≥ Pr

(
∩
𝑖∈

(
𝑆
(𝜃∗ )
𝑎 ∪𝑆 (𝜃∗ )

𝑑

)CS(𝜃 ∗)
𝑖

)
≥ 1 −

∑︁
𝑖∈

(
𝑆
(𝜃∗ )
𝑎 ∪𝑆 (𝜃∗ )

𝑑

) Pr (ICS𝑖 ) ≥ 1 − (𝑘 − 𝑗
(𝜃 ∗)
𝑢 − 1)𝛽2 .

Thus, we have

Pr
(
CS(𝜃 ∗)

)
≥

[
1 − ( 𝑗 (𝜃

∗)
𝑢 + 1)𝑠𝛽1

] [
1 − (𝑘 − 𝑗

(𝜃 ∗)
𝑢 − 1)𝛽2

]
.

To find a lower bound of
[
1 − ( 𝑗 (𝜃

∗)
𝑢 + 1)𝑠𝛽1

] [
1 − (𝑘 − 𝑗

(𝜃 ∗)
𝑢 − 1)𝛽2

]
, we see that[

1 − ( 𝑗 (𝜃
∗)

𝑢 + 1)𝑠𝛽1

] [
1 − (𝑘 − 𝑗

(𝜃 ∗)
𝑢 − 1)𝛽2

]
= −𝑠𝛽1𝛽2 × ( 𝑗 (𝜃

∗)
𝑢 )2 + [(𝑘 − 2)𝑠𝛽1𝛽2 − 𝑠𝛽1 + 𝛽2] × 𝑗

(𝜃 ∗)
𝑢 + (1 − 𝑠𝛽1) [1 − (𝑘 − 1)𝛽2] .

Given that 0 ≤ 𝑗
(𝜃 ∗)
𝑢 ≤ 𝑘 − 1, we see that the above quadratic function achieves its minimum either when 𝑗

(𝜃 ∗)
𝑢 = 0

or 𝑗 (𝜃
∗)

𝑢 = 𝑘 − 1. When 𝑗
(𝜃 ∗)
𝑢 = 0, we have[

1 − ( 𝑗 (𝜃
∗)

𝑢 + 1)𝑠𝛽1

] [
1 − (𝑘 − 𝑗

(𝜃 ∗)
𝑢 − 1)𝛽2

]
= (1 − 𝑠𝛽1) (1 − (𝑘 − 1)𝛽2)
= (1 − 𝛼1/𝑘) (1 − 𝛼2)
= (1 − 𝛼1/𝑘) (1 − 𝛼1),

where the second equality holds since procedure HAK sets 𝛽1 = 𝛼1/(𝑘𝑠) and HAKR sets 𝛽2 = 𝛼2/(𝑘 − 1) when
systems are correlated. When 𝑗

(𝜃 ∗)
𝑢 = 𝑘 − 1, we have[

1 − ( 𝑗 (𝜃
∗)

𝑢 + 1)𝑠𝛽1

] [
1 − (𝑘 − 𝑗

(𝜃 ∗)
𝑢 − 1)𝛽2

]
= (1 − 𝑘𝑠𝛽1) = 1 − 𝛼1,

where the second equality holds since HAK sets 𝛽1 = 𝛼1/(𝑘𝑠) when systems are correlated. Therefore, we have

Pr
(
CS(𝜃 ∗)

)
≥ min [1 − 𝛼1, (1 − 𝛼1/𝑘) (1 − 𝛼1)]

= (1 − 𝛼1/𝑘) (1 − 𝛼1) =
1
𝑘
𝛼2

1 −
𝑘 + 1
𝑘

𝛼1 + 1

=
1
𝑘

[
1
2

(
𝑘 + 1 −

√︁
(𝑘 + 1)2 − 4𝑘𝛼 ′

)]2
− 𝑘 + 1

2𝑘

(
𝑘 + 1 −

√︁
(𝑘 + 1)2 − 4𝑘𝛼 ′

)
+ 1

= 1 − 𝛼 ′.

Note that although setting 𝛼1 =
1
2

(
𝑘 + 1 +

√︁
(𝑘 + 1)2 − 4𝑘𝛼 ′

)
also yields Pr(CS(𝜃 ∗) ) ≥ 1− 𝛼 ′, it is not valid. This is

because 1
2

(
𝑘 + 1 +

√︁
(𝑘 + 1)2 − 4𝑘𝛼 ′

)
> 1

2

(
𝑘 + 1 +

√︁
(𝑘 + 1)2 − 4𝑘

)
= 𝑘 ≥ 1 (as 0 < 𝛼 ′ < 1) and hence selecting

𝛼1 in this manner violates the fact that 0 < 𝛼1 < 1.
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Thus, we see that Pr
(
CS(𝜃 )

)
≥ Pr

(
CS(𝜃 ∗)

)
≥ 1 − 𝛼 ′ regardless whether systems are simulated independently or

under CRN. Therefore, we have

Pr{CSRestart} ≥ Pr{∩𝜃 ∗

𝜃=1CS(𝜃 ) } ≥ Pr{∩𝑑
𝜃=1CS(𝜃 ) } =

𝑑∏
𝜃=1

Pr
(
CS(𝜃 )

)
≥ (1 − 𝛼 ′)𝑑 = (1 − (1 − (1 − 𝛼)1/𝑑 ))𝑑 = 1 − 𝛼.

Case 2: 𝜃 ∗ = 𝑑 + 1.
If 𝜃 ∗ = 𝑑 + 1, there are no desirable systems for any threshold vector. Therefore, CS(𝜃 ) is ensured by correctly
concluding feasibility decisions for all systems 𝑖 ∈ 𝑆

(𝜃 )
𝑢 . Then Pr(CS(𝜃 ) ) ≥ Pr(A (𝜃 ) ) and Lemma F.1 and the

Bonferroni inequality yields

Pr(CS(𝜃 ) ) ≥
{
(1 − 𝑠𝛽1) 𝑗

(𝜃 )
𝑢 , if systems are simulated independently,

1 − 𝑗
(𝜃 )
𝑢 𝑠𝛽1, if systems are simulated under CRN,

≥
{
(1 − 𝑠𝛽1)𝑘 , if systems are simulated independently,
1 − 𝑘𝑠𝛽1, if systems are simulated under CRN,

where the last inequality is due to the fact that 0 ≤ 𝑗
(𝜃 )
𝑢 ≤ 𝑘 for any 𝜃 = 1, . . . , 𝑑. When systems are simulated

independently, we have

Pr
{
CS(𝜃 )

}
≥ (1 − 𝑠𝛽1)𝑘 = 1 − 𝛼1 > 1 − 𝛼 ′.

When systems are simulated under CRN, we have

Pr
{
CS(𝜃 )

}
≥ (1 − 𝑘𝑠𝛽1) = 1 − 𝛼1 > 1 − 𝛼 ′.

Thus, we have Pr
(
CS(𝜃 )

)
≥ 1 − 𝛼 ′ regardless whether systems are simulated independently or under CRN. Then it

follows that

Pr
{
CSRestart} ≥ Pr{∩𝑑

𝜃=1CS(𝜃 ) } =
𝑑∏

𝜃=1
Pr

(
CS(𝜃 )

)
≥ (1 − 𝛼 ′)𝑑 = 1 − 𝛼. □

REMARK 3. There are two potential improvement for RestartHAKR
in terms of setting the implement parame-

ters:

(1) The proof of Theorem F.3 computes Pr(A (𝜃 ∗) ) ≥ (1 − 𝑠𝛽1) 𝑗
(𝜃∗ )
𝑢 when systems are simulated independently

and Pr(A (𝜃 ∗) ) ≥ 1 − 𝑗
(𝜃 ∗)
𝑢 𝑠𝛽1 when systems are simulated under CRN, which is consistent with the choice of

implementation parameters in Procedure HAK in Healey et al. [8]. However, these bounds can be improved
using ideas in this paper. In particular, similar to the argument in the proof of Lemma 2, for each system
𝑖 ∈ 𝑆

(𝜃 ∗)
𝑢 , let ℓ𝑖 be a constraint such that system 𝑖 is infeasible to threshold vector 𝑞 (𝜃 ∗)

ℓ𝑖
. To declare system

𝑖 infeasible to threshold vector q(𝜃
∗) , it is sufficient to make a correct feasibility decision for constraint ℓ𝑖

with respect to threshold 𝑞
(𝜃 ∗)
ℓ𝑖

. Therefore, one may improve the efficiency of RestartHAKR
by computing

Pr(A (𝜃 ∗) ) as

Pr
(
A (𝜃 ∗)

)
≥ Pr

(
∩
𝑖∈𝑆 (𝜃∗ )

𝑢
CD𝑖ℓ𝑖 (𝑞

(𝜃 ∗)
ℓ𝑖

)
)
=

∏
𝑖∈𝑆 (𝜃∗ )

𝑢

Pr
(
CD𝑖ℓ𝑖 (𝑞

(𝜃 ∗)
ℓ𝑖

)
)
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=
∏

𝑖∈𝑆 (𝜃∗ )
𝑢

[
1 − Pr

(
ICD𝑖ℓ𝑖 (𝑞

(𝜃 ∗)
ℓ𝑖

)
)]

≥ (1 − 𝛽1) 𝑗
(𝜃∗ )
𝑢 .

when systems are simulated independently, and

Pr
(
A (𝜃 ∗)

)
≥ Pr

(
∩
𝑖∈𝑆 (𝜃∗ )

𝑢
CD𝑖ℓ𝑖 (𝑞

(𝜃 ∗)
ℓ𝑖

)
)
≥ 1 −

∑︁
𝑖∈𝑆 (𝜃∗ )

𝑢

Pr
(
ICD𝑖ℓ𝑖 (𝑞

(𝜃 ∗)
ℓ𝑖

)
)
≥ 1 − 𝑗

(𝜃 ∗)
𝑢 𝛽1.

when systems are simulated under CRN.
(2) The proof of Theorem F.3 allocates error to both Phases I and II in order to achieve CS(𝜃 ) for all 𝜃 = 1, . . . , 𝜃 ∗.

One may improve the efficiency of RestartHAKR
by not allocating error to Phase II when 𝜃 < 𝜃 ∗ (since there

are no feasible systems exists with respect to q(𝜃 ) when 𝜃 < 𝜃 ∗).
As the current approach is a natural and statistical valid way of restarting HAK for different threshold vectors,
we do not consider an improved version of RestartHAKR

since this is not the main focus of the paper.

As RestartHAK reuses the observations from Phase I and assigns the error in Phase II more efficiently, it is
expected to perform better than RestartHAKR

. Although we do not prove the statistical validity of RestartHAK , we
have not found any experiments that violate the statistical guarantee. We believe that RestartHAKR

and RestartHAK

are appropriate choices of sequentially-running approaches for comparison with ZAKR and ZAK, respectively.

G PROCEDURES RestartAK+ AND RestartHAK+

In this section, we discuss the algorithms RestartAK+ and RestartHAK+ and their statistical validity. Similar to
Appendix F, as RestartAK+ is a special case of RestartHAK+ when the number of constraints is one, we omit a
separate discussion of RestartAK+.

RestartHAK+ performs procedure HAK+ due to [8] independently for the threshold vectors q(1) , q(2) , . . . , q(𝜃
∗)

when 1 ≤ 𝜃 ∗ ≤ 𝑑, and for threshold vectors q(1) , q(2) , . . . , q(𝑑) independently when 𝜃 ∗ = 𝑑 + 1. As discussed in
[8], HAK+ requires user to choose a feasibility check procedure. In our experiments, we choose F I

B in [8] as
the feasibility check procedure. HAK+ also requires a user‘s input for the ratio, namely 𝑒 = 𝑠𝛽1/𝛽2, of the error
for the feasibility checks and the comparison. We set 𝑒 = 1 as recommended in [8] and the initial sample size
when RestartHAK+ applies HAK+ with respect to each threshold vector is set as 𝑛0 = 20. Note that the procedure
and the proof discussed in this section can be easily generalized to a different value of 𝑒. A detailed algorithm
description is shown in Algorithm A.6.

We utilize the same notation of 𝑆 (𝜃 )
𝑢 , 𝑗

(𝜃 )
𝑢 , CS(𝜃 ) , and CSRestart as in Appendix F, and prove the statistical validity

of RestartHAK+ in the following theorem.

THEOREM G.1. Under Assumptions 1 and 2, the procedure RestartHAK+ guarantees

Pr{CSRestart} ≥ 1 − 𝛼.

PROOF. We consider two cases, namely 𝜃 ∗ ≤ 𝑑 and 𝜃 ∗ = 𝑑 + 1.
Case 1: 𝜃 ∗ ≤ 𝑑 .
When systems are simulated independently and Assumptions 1 and 2 hold, due to Lemmas F.1 and F.2 and
the arguments in the proof of Theorem F.3, the feasibility check and comparison procedures of HAK+ satisfy
Assumptions 3 and 5 of [8], respectively. Thus, we are able to apply Lemma 4.2 of [8]. That is, we have

Pr
{
CS(𝜃 )

}
≥ (1 − 𝑠𝛽1) 𝑗

(𝜃 )
𝑢 + (1 − 𝑠𝛽1) + (1 − 𝛽2)𝑘−𝑗

(𝜃 )
𝑢 −1 − 2, (6)

when 𝑗
(𝜃 )
𝑢 < 𝑘 and Pr

(
CS(𝜃 )

)
≥ (1 − 𝑠𝛽1)𝑘 when 𝑗

(𝜃 )
𝑢 = 𝑘. Also, Remark 4.3 of [8] discusses that the smallest

lower bond on Pr
{
CS(𝜃 )} is always achieved when 𝑗

(𝜃 )
𝑢 < 𝑘. As we set 𝛽2 = 𝑠𝛽1 and 𝛽2 as the solution to
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Algorithm A.6 Procedure RestartHAK+

[Setup:] Select the overall nominal confidence level 1 − 𝛼 . Choose tolerance levels 𝜖1, . . . , 𝜖𝑠 , indifference-zone
parameter 𝛿 , and threshold vectors {q(1) , q(2) , . . . , q(𝑑) }. Choose procedure F I

B as the feasibility check procedure
and set 𝛼 ′ = 1 − (1 − 𝛼)1/𝑑 .
for 𝜃 = 1, . . . , 𝑑 do

[Setup] for HAK+: Same as in HAK+ except that 𝛼 is replaced by 𝛼 ′. Note that we set 𝛽2 to the
solution of 𝛽2 + 2

[
1 − (1 − 𝛽2) (𝑘−1)/2] = 𝛼 ′ when systems are simulated independently and set 𝛽2 = 𝛼 ′/𝑘

when systems are simulated under CRN. We also set 𝛽1 = 𝛽2/𝑠.
[Initialization], [Feasibility Check], [Comparison], and [Stopping Rule] are the same as in
HAK+.
[Stopping Condition:] If one system is found in [Stopping Rule], terminate the algorithm and
select the system as the best. If no system is found in [Stopping Rule] and 𝜃 = 𝑑 , declare no feasible
system exists with respect to the given threshold vectors.

end for

𝛽2 + 2[1 − (1 − 𝛽2) (𝑘−1)/2] = 𝛼 ′, we know that

(1 − 𝑠𝛽1) 𝑗
(𝜃 )
𝑢 + (1 − 𝑠𝛽1) + (1 − 𝛽2)𝑘−𝑗

(𝜃 )
𝑢 −1 − 2 = (1 − 𝛽2) 𝑗

(𝜃 )
𝑢 + (1 − 𝛽2) + (1 − 𝛽2)𝑘−𝑗

(𝜃 )
𝑢 −1 − 2

≥ (1 − 𝛽2) (𝑘−1)/2 + (1 − 𝛽2) + (1 − 𝛽2) (𝑘−1)/2 − 2

= 1 −
(
𝛽2 + 2

[
1 − (1 − 𝛽2) (𝑘−1)/2

] )
= 1 − 𝛼 ′,

where the inequality holds as the lower bound is achieved when 𝑗
(𝜃 )
𝑢 = (𝑘 − 1)/2. By Theorem 4.4 of [8], we know

that Pr
(
CS(𝜃 )

)
≥ 1 − 𝛼 ′.

When systems are simulated under CRN and Assumptions 1 and 2 hold, due to Lemmas F.1 and F.2 and the
arguments in the proof of Theorem F.3, the feasibility check procedure and the comparison procedure of HAK+
satisfy Assumptions 4 and 6. With Assumption 1, we apply Lemma 4.6 of [8] and have

Pr
{
CS(𝜃 )

}
≥ 1 − ( 𝑗 (𝜃 )𝑢 + 1)𝑠𝛽1 − (𝑘 − 𝑗

(𝜃 )
𝑢 − 1)𝛽2, (7)

when 𝑗
(𝜃 )
𝑢 < 𝑘 and Pr

{
CS(𝜃 )} ≥ 1 − 𝑘𝑠𝛽1 when 𝑗

(𝜃 )
𝑢 = 𝑘 . As we set 𝛽2 = 𝑠𝛽1 = 𝛼 ′/𝑘 , we know that

1 − ( 𝑗 (𝜃 )𝑢 + 1)𝑠𝛽1 − (𝑘 − 𝑗
(𝜃 )
𝑢 − 1)𝛽2 = 1 − 𝑘𝛽2 = 1 − 𝛼 ′.

Then by Theorem 4.8 of [8], we know that Pr
(
CS(𝜃 )

)
≥ 1 − 𝛼 ′.

As we have Pr
(
CS(𝜃 )

)
≥ 1 − 𝛼 ′ regardless of whether the systems are simulated independently or under CRN,

we have

Pr{CSRestart} ≥ Pr
{
∩𝜃 ∗

𝜃=1CS(𝜃 )
}
≥ Pr

{
∩𝑑
𝜃=1CS(𝜃 )

}
=

𝑑∏
𝜃=1

Pr
(
CS(𝜃 )

)
≥ (1 − 𝛼 ′)𝑑 = (1 − (1 − (1 − 𝛼)1/𝑑 ))𝑑 = 1 − 𝛼.

Case 2: 𝜃 ∗ = 𝑑 + 1.
If 𝜃 ∗ = 𝑑 + 1, there are no desirable systems for any threshold vector. This means that we have 𝑗

(𝜃 )
𝑢 = 𝑘 for any
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𝜃 = 1, . . . , 𝑑 . Similar to the proof of Theorem F.3, CS(𝜃 ) is ensured by correctly concluding feasibility decisions for
all systems 𝑖 ∈ 𝑆

(𝜃 )
𝑢 . By Lemmas 4.2 and 4.6 from [8], we have

Pr
(
CS(𝜃 )

)
≥
{
(1 − 𝑠𝛽1)𝑘 , if systems are simulated independently,
1 − 𝑘𝑠𝛽1, if systems are simulated under CRN.

When systems are simulated independently, by Remark 4.3 of [8], the lower bound of (1 − 𝑠𝛽1)𝑘 is never smaller
than the Right-Hand Side (RHS) of Equation (6) when 𝑗

(𝜃 ∗)
𝑢 = 𝑘 − 1. Therefore, we have (1 − 𝑠𝛽1)𝑘 ≥ 1 − 𝛼 ′.

When systems are simulated under CRN, by Remark 4.7 of [8], the lower bound of 1 − 𝑘𝑠𝛽1 is equal to the RHS
of Equation (7) when 𝑗

(𝜃 ∗)
𝑢 = 𝑘 − 1. Therefore, we have 1 − 𝑘𝑠𝛽1 ≥ 1 − 𝛼 ′.

Thus, we have Pr(CS(𝜃 ) ) ≥ 1 − 𝛼 ′ both when the systems are simulated independently or under CRN. It then
follows that

Pr
{
CSRestart} ≥ Pr{∩𝑑

𝜃=1CS(𝜃 ) } =
𝑑∏

𝜃=1
Pr

(
CS(𝜃 )

)
≥ (1 − 𝛼 ′)𝑑 = 1 − 𝛼. □

REMARK 4. Similar as in Appendix F, there are two potential improvement for RestartHAK+ in terms of setting
the implementation parameters:

(1) Due a similar reason as in Remark 1, the computation of Pr(CS(𝜃 ) ) in the proof of Theorem G.1 can be
improved. When systems are simulated independently, Equation (6) can be improved as

Pr
{
CS(𝜃 )

}
≥ (1 − 𝛽1) 𝑗

(𝜃 )
𝑢 + (1 − 𝑠𝛽1) + (1 − 𝛽2)𝑘−𝑗

(𝜃 )
𝑢 −1 − 2.

When systems are simulated under CRN, Equation (7) can be improved as

Pr
{
CS(𝜃 )

}
≥ 1 − ( 𝑗 (𝜃 )𝑢 + 1)𝛽1 − (𝑘 − 𝑗

(𝜃 )
𝑢 − 1)𝛽2 .

(2) The proof of Theorem G.1 allocates error to both Phases I and II for all 𝜃 = 1, . . . , 𝜃 ∗. One may improve
the efficiency of RestartHAK+ by not allocating error to Phase II when 𝜃 < 𝜃 ∗ (since there are no feasible
systems exists with respect to q(𝜃 ) when 𝜃 < 𝜃 ∗).

As the current setting is a natural and statistical valid way of restarting HAK+ for different threshold vectors, we
do not consider an improved version of RestartHAK+ since this is not the main focus of the paper.

H EXPERIMENTAL RESULTS FOR IMPLEMENTATION PARAMETERS
In this section, we present the experimental results that we use to choose the implementation parameters for the
proposed procedures ZAKR , ZAK, and ZAK+.

We test the performance of our proposed procedures in the DM mean configuration, the L/L variance configura-
tion, and the ranked constraints preference order (where the constraints are ranked from constraint 1 to constraint 𝑠)
when 𝑘 = 100, 𝑠 = 2, 4, 6, and 𝑏 = 25, 50. When 𝑠 = 2, both constraints have three thresholds {0, 2𝜖ℓ , 4𝜖ℓ }, for all
ℓ = 1, 2, and 𝜃 ∗ is set as 𝜃 ∗ = 5. When 𝑠 = 4, we consider the threshold values of each constraint shown in Table
A.1 and 𝜃 ∗ = 50. When 𝑠 = 6, we let constraint ℓ have two thresholds {0, 2𝜖ℓ }, where ℓ = 1, . . . , 6, and 𝜃 ∗ = 30.
The results of OBS when 𝑠 = 2 and 𝑏 = 50 and when 𝑠 = 4 and 𝑏 = 25 are shown in Figure A.1. Figures A.2(a)
and A.2(b) show the experimental results for the case where 𝑠 = 2 and 𝑏 = 25 and the case where 𝑠 = 4 and
𝑏 = 50, respectively. The results for the six constraints case where 𝑏 = 25 and 50 are shown in Figures A.2(c) and
A.2(d), respectively. Note that we fixed the ranges of 𝑒1, 𝑒2, 𝑒 ∈ {0.25, 0.5, 1, 2, . . . , 7} and depict OBS on the scale
{2, 2.5, . . . , 5} × 104 in all the figures to facilitate the comparison.
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Table A.1. Threshold configuration for the four constraints (𝑠 = 4) case

Constraint Threshold values of constraint ℓ

ℓ = 1 0, 2𝜖1, 4𝜖1, 6𝜖1
ℓ = 2 0, 2𝜖2
ℓ = 3 0, 2𝜖3, 4𝜖3
ℓ = 4 0, 2𝜖4, 4𝜖4, 6𝜖4

(a) OBS when 𝑠 = 2 and 𝑏 = 50 (b) OBS when 𝑠 = 4 and 𝑏 = 25

Fig. A.1. Average number of observations of procedures ZAKR
1 ,ZAKR

2 ,ZAK1,ZAK2, and ZAK+ as functions of
𝑒1, 𝑒2, and 𝑒 for 𝑘 = 100 systems and 𝑠 = 2 and 4 constraints.

We see that for the four cases shown in Figure A.2, the values of 𝑒1, 𝑒2, and 𝑒 where OBS achieves its minimum
value ranges from 2 to 7 and the OBS is flat within this range. Note that the OBS is also similar between the two
settings of the implementation parameters of ZAKR and ZAK.

I ADDITIONAL EXPERIMENTAL RESULTS FOR EFFICIENCY
In this section, we provide additional experimental results aimed at comparing the efficiency among all proposed
procedures. Note that all the experimental results in this section are based on the L/L variance configuration.

Figure A.3 shows the OBS for a single constraint with ten thresholds under the MDM configuration (same experi-
mental setting as in Figure 5 except for the mean configuration) for all four procedures ZAK , RestartAK ,ZAK+,
and RestartAK+. The pattern is similar when 1 ≤ 𝜃 ∗ ≤ 10 as in Figure 5(b) except that the benefit of ZAK+
over ZAK is more substantial. When 𝜃 ∗ = 11, ZAK+ and RestartZAK+ require more OBS than when 𝜃 ∗ = 10.
Since the problem is easier under the MDM configuration than with the MIM configuration for both ZAK+ and
RestartZAK+ when 1 ≤ 𝜃 ∗ ≤ 10 and becomes the same when 𝜃 ∗ = 11, this is expected. Both ZAK and ZAK+
perform significantly better than the alternative procedures RestartAK and RestartAK+.

Figures A.4, A.5, and A.6 show the OBS for two constraints with three thresholds on each constraint (same
experimental setting as in Figures 6 and 7) for all four procedures ZAK, RestartAK ,ZAK+, and RestartAK+

under the ranked constraints, equally important constraints, and total violation with ranked constraints formulations,
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(a) OBS when 𝑠 = 2 and 𝑏 = 25 (b) OBS when 𝑠 = 4 and 𝑏 = 50

(c) OBS when 𝑠 = 6 and 𝑏 = 25 (d) OBS when 𝑠 = 6 and 𝑏 = 50

Fig. A.2. Average number of observations of procedures ZAKR
1 , ZAKR

2 , ZAK1, ZAK2, and ZAK+ as functions of
𝑒1, 𝑒2, and 𝑒 for 𝑘 = 100 systems and 𝑠 = 2, 4, 6 constraints.

respectively. Each figure also contains the DM, MIM, and MDM configurations. As in the single constraint case,
both ZAK and ZAK+ show significant improvement compared with their competing procedures RestartHAK

and RestartHAK+ under all threshold formulations and all mean configurations. Note that the results of ZAK and
ZAK+ under the MIM and MDM configurations with the ranked constraints and equally important constraints
formulations (Figures A.4(b), A.4(c), A.5(b), and A.5(c)) are the same as in Figures 6 and 7, but are shown on
different scales because RestartHAK and RestartHAK+ require much more observations than ZAK and ZAK+.

Finally, Figure A.7 shows the experimental results for two constraints with three thresholds on each constraint
for procedures ZAK and ZAK+ under the total violation with ranked constraints formulation and the MIM
and MDM configurations (same setting as in Figures 6 and 7 except for the preference order). As discussed and
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Fig. A.3. Average number of observations of ZAK , RestartAK , ZAK+, and RestartAK+ as functions of 𝜃∗ for 𝑘 = 100
systems and 𝑠 = 1 constraint with ten thresholds under the MDM configuration.

explained in Section 6.4, the result shows a similar pattern as in Figure 6. We see that ZAK+ performs slightly
better or very similar to ZAK under the MIM configuration and performs significantly better than ZAK under
the MDM configuration. Note that although the results for ZAK and ZAK+ in Figures A.7(a) and A.7(b) are
the same as in Figures A.6(b) and A.6(c), the scales of the plots are different due to the fact that RestartHAK and
RestartHAK+ require much more observations.

J EXPERIMENTAL RESULTS FOR THE IMPACT OF USING CRN
In this section, we discuss the impact of using CRN when applying the proposed procedures. To account for the
dependency across systems induced by the use of CRN, the implementation parameters of both procedures take
more conservative values than those with independent sampling. However, CRN often reduces the variance of
the difference in the primary performance measures among systems. Thus, the feasibility check tends to require
more observations while the comparison tends to require fewer observations. Whether CRN helps the overall
performance of proposed procedures depends on how much savings we get in the comparison compared to the
increment in observations in the feasibility check.

We consider the case of a single constraint with two thresholds (𝑑 = 2) under the DM configuration and three
different variance configurations (H/L, L/L, and L/H). Let 𝜌 be the correlation between each pair of systems for the
primary performance measure. Then the variance of the difference in the primary performance measure between
two systems equals 2𝜎2

𝑥𝑖
(1 − 𝜌), while the variance of the secondary performance measure of each system is 𝜎2

𝑦𝑖ℓ
.

When systems are simulated independently (i.e., 𝜌 = 0), the first two variance configurations (H/L and L/L) have
more difficult comparison than feasibility check due to the larger value of 2𝜎2

𝑥𝑖
than 𝜎2

𝑦𝑖ℓ
. On the other hand, the L/H

configuration has easier comparison than feasibility check. Thus, we expect the H/L and L/L variance configurations
to show the benefit of CRN but not the L/H configuration. In our experiments, we consider 𝜌 ∈ {0.25, 0.5, 0.75}
and all possible values of 𝜃 ∗ (i.e., 𝜃 ∗ ∈ {1, 2, 3}), and fix 𝑏 = 25. The results for the H/L, L/L, and L/H variance
configurations are shown in Tables A.2, A.3, and A.4, respectively.
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(a) OBS under DM

(b) OBS under MIM (c) OBS under MDM

Fig. A.4. Average number of observations of ZAK, RestartHAK ,ZAK+, and RestartHAK+ as functions of 𝜃∗ for 𝑘 = 100
systems and 𝑠 = 2 constraints under the DM, MIM, and MDM configurations for the ranked constraints formulation.

From Tables A.2 and A.3, we see that under the H/L and L/L variance configurations, ZAK and ZAK+ both
require fewer observations when CRN is applied with 𝜃 ∗ ∈ {1, 2} and 𝜌 ∈ {0.25, 0.5, 0.75}. As the variance of the
pairwise comparison is reduced due to the CRN, the continuation region for comparison gets shorter and narrower
and thus it takes fewer observations to complete the comparison among systems deemed feasible. Note that when
𝜃 ∗ = 3, all systems are infeasible with respect to all threshold vectors considered, which means that the procedures
are likely to be terminated by all systems deemed infeasible and there is no need to wait for the comparison
decisions to be completed. Thus applying CRN does not help in this case. One may notice that the benefit of
applying CRN is more obvious in Table A.2 than that in Table A.3. This is expected because the variance of the
primary performance measure in the H/L configuration (Table A.2) is much larger than that in the L/L configuration
(Table A.3). Therefore, reducing the variance of the pairwise comparison benefits the overall performance a lot
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(a) OBS under DM

(b) OBS under MIM (c) OBS under MDM

Fig. A.5. Average number of observations of ZAK, RestartHAK ,ZAK+, and RestartHAK+ as functions of 𝜃∗ for 𝑘 = 100
systems and 𝑠 = 2 constraints under the DM, MIM, and MDM configurations for the equally important constraints
formulation.

more under the H/L configuration. We also see that for a fixed 𝜌, the performance of ZAK (ZAK+) is similar
under 𝜃 ∗ = 1 or 2. This is expected as procedures ZAK and ZAK+ are robust with respect to the values of
𝜃 ∗. The OBS decreases when 𝜌 increases for both ZAK and ZAK+ when 𝜃 ∗ ∈ {1, 2}. This is because higher
correlation across systems reduces the variance of the difference in the primary performance measures among
systems, and thus both procedures become more efficient with larger 𝜌. When 𝜃 ∗ = 3, however, as there are no
feasible systems, reducing the variance of the difference in the primary performance measures among systems does
not improve performance because no comparison is required to achieve CS.

Table A.4 shows the experimental results when the variance configuration is set to L/H. As the feasibility check is
considered to be more difficult than the pairwise comparison, the benefit of CRN is expected to be smaller. Indeed,
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(a) OBS under DM

(b) OBS under MIM (c) OBS under MDM

Fig. A.6. Average number of observations of ZAK, RestartHAK ,ZAK+, and RestartHAK+ as functions of 𝜃∗ for 𝑘 = 100
systems and 𝑠 = 2 constraints under the DM, MIM, and MDM configurations for the total violation with ranked constraints
formulation.

we do not see much savings in observations for both procedures. [8] discuss the required correlation to overcome
the conservative Bonferroni bound required for the proof of the statistical validity of the proposed procedures
under CRN. They show that the cross-correlation 𝜌 needs to be sufficiently large to achieve a smaller number of
observations under CRN than under independent sampling. When 𝜃 ∗ = 1, our problem configuration becomes
similar to that of [8] and we do see savings in observations for ZAK+ (but not for ZAK) when 𝜌 is sufficiently
large, which is consistent with the findings from [8]. When 𝜃 ∗ = 2, 3, the benefit of CRN does not exist in this
setting. When the feasibility check is more difficult than the pairwise comparison in the sense that it takes more
observations to complete, it is possible that the use of CRN makes the overall performance worse than independent
sampling. However, Table A.4 shows that the increment in observations does not seem significant.
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(a) OBS under MIM (b) OBS under MDM

Fig. A.7. Average number of observations ofZAK andZAK+ as functions of 𝜃∗ for 𝑘 = 100 systems and 𝑠 = 2 constraints
under the MIM, and MDM configurations for the total violation with ranked constraints formulation.

Table A.2. Average number of observations and estimated PCS (reported in parentheses) of ZAK and ZAK+ for 𝑘 = 100
system and 𝑠 = 1 constraint with two thresholds under the DM and H/L configurations and 𝜌 ∈ {0.25, 0.5, 0.75}

With CRN Without CRN
𝜌 ZAK ZAK+ ZAK ZAK+

𝜃 ∗ = 1

0.25 37610 47509
(0.969) (0.974)

0.5 32316 40273 39429 49674
(0.965) (0.973) (0.964) (0.974)

0.75 23429 28165
(0.953) (0.972)

𝜃 ∗ = 2

0.25 37409 47265
(0.960) (0.968)

0.5 32084 40059 39357 49381
(0.955) (0.967) (0.960) (0.965)

0.75 23351 28041
(0.949) (0.967)

𝜃 ∗ = 3

0.25 15015 14896
(0.972) (0.971)

0.5 15020 14888 14986 14814
(0.970) (0.973) (0.969) (0.968)

0.75 15014 14884
(0.972) (0.973)

In summary, there is a trade-off between the required number of observations in the feasibility check and pairwise
comparison when CRN is applied. CRN is unlikely to help when (i) the comparison is easier than the feasibility
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Table A.3. Average number of observations and estimated PCS (reported in parentheses) of ZAK and ZAK+ for 𝑘 = 100
system and 𝑠 = 1 constraint with two thresholds under the DM and L/L configurations and 𝜌 ∈ {0.25, 0.5, 0.75}

With CRN Without CRN
𝜌 ZAK ZAK+ ZAK ZAK+

𝜃 ∗ = 1

0.25 17033 18647
(0.966) (0.975)

0.5 16202 17305 17334 19021
(0.968) (0.972) (0.967) (0.974)

0.75 15221 15306
(0.956) (0.977)

𝜃 ∗ = 2

0.25 17212 18675
(0.960) (0.967)

0.5 16492 17475 17462 19043
(0.958) (0.967) (0.961) (0.968)

0.75 15729 15873
(0.956) (0.968)

𝜃 ∗ = 3

0.25 15022 14880
(0.973) (0.971)

0.5 15023 14885 14985 14807
(0.969) (0.970) (0.970) (0.971)

0.75 15014 14875
(0.973) (0.971)

check or (ii) the induced correlation across systems for the primary performance measure is small. If the decision
maker knows that the comparison is easier than the feasibility check or that the correlation is small, then it is better
to use independent sampling. However, the decision maker may not have this information in practice. In that case,
we recommend that the decision maker uses CRN because there is a possibility that CRN will reduce the number of
observations significantly and, even when it does not, the number of observations with CRN appears to be similar
to or only slightly larger than that with independent sampling.

Based on the results in Tables A.2, A.3, and A.4, we also observe that ZAK performs better than ZAK+ when
𝜃 ∗ ∈ {1, 2} under the H/L and L/L configurations while ZAK+ dominates ZAK when 𝜃 ∗ ∈ {1, 2} under the L/H
configuration. Both ZAK and ZAK+ perform similar when 𝜃 ∗ = 3. This agrees with the finding from the single
constraint with four thresholds case discussed in Section 6.4 (Table 2).
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Table A.4. Average number of observations and estimated PCS (reported in parentheses) of ZAK and ZAK+ for 𝑘 = 100
system and 𝑠 = 1 constraint with two thresholds under the DM and L/H configuration and 𝜌 ∈ {0.25, 0.5, 0.75}

With CRN Without CRN
𝜌 ZAK ZAK+ ZAK ZAK+

𝜃 ∗ = 1

0.25 74008 69321
(0.978) (0.976)

0.5 73930 68283 73842 69288
(0.975) (0.974) (0.977) (0.972)

0.75 73912 66547
(0.979) (0.975)

𝜃 ∗ = 2

0.25 77149 75501
(0.969) (0.967)

0.5 77159 75241 76959 75239
(0.969) (0.967) (0.967) (0.966)

0.75 77176 74959
(0.971) (0.969)

𝜃 ∗ = 3

0.25 74484 73521
(0.970) (0.967)

0.5 74506 73528 74339 73266
(0.969) (0.971) (0.969) (0.966)

0.75 74493 73492
(0.970) (0.968)
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